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“Whenever choice appears in any form - as rivalry between appetites 
which cannot be simultaneously satisfied, as a perceived meaning 
attached to an ambiguous stimulus, as a planned decision between two 
courses of action, as a symbolic fulfillment of an unsuspected act - it 
always involves an element of inhibition.”

Solomon Diamond, Richard Balvin and Florence Rand 
Diamond, in Inhibition and choice: A neurobehavioral 
approach to problems of plasticity in behavior (1963)
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Reward and aversion
In order to survive and flourish in a competitive world, an organism must learn to repeat 
actions that have proven profitable and avoid actions that have not. In this way, one learns 
to adapt its behavior in a changeable environment, in order to optimally promote survival. 
For example, it is smart to revisit a place that is rich in foods, but not when this same place 
is filled with predators. By incorporating these rewarding (food) and negative (predator) 
experiences into a value representation of stimuli in the surrounding world, one can enjoy 
rewards, such as food and sex, without experiencing life-threatening dangers. These value 
representations, and the repeated updating of these values based on each action’s outcome, 
are the essence of decision-making processes that living organisms encounter numerous 
times each day.
 Adapting behavior in response to positive and negative feedback is driven by 
a learning process called operant conditioning or instrumental learning. First stated by 
Thorndike1, and later refined by Skinner2,3 (see also Box 1), is the notion that cats, pigeons 
and rats tend to increase the frequency of a certain behavior when this behavior is reinforced 
- either by the delivery of something pleasant (positive reinforcement) or the removal of 
something aversive (negative reinforcement). Thorndike described this theory in his Law of 
effect1, after observing that a cat that is restrained in a box gradually learns how to escape 
by using trial and error. 40 years after Thorndike’s cat experiments, Skinner set the stage for 
the next decades of experimental psychological research by theorizing operant conditioning 
in his book The behavior of organisms2 and the development of the now widely used operant 
conditioning chambers. Although his theory was more formally postulated than Thorndike’s, 
the idea behind the theory remained the same: behavior that is reinforced will be repeated, 
and behavior that is punished will cease. The operant conditioning chambers that he created 
became the world standard laboratory tool to study how reward and aversion shape behavior 
of animals, and these are still a key tool for animal research on addiction, decision making, 
and learning and memory.
 In the last decades, interest in operant conditioning has increased due to the rise 
of artificial intelligence and its subfield of machine learning, which studies the ability of 
computers to learn on the basis of data without being explicitly programmed. One form of 
machine learning is called reinforcement learning, which teaches computers how to ideally 
respond on the basis of feedback, and is essentially a quantitative approach to operant 
learning. As such, the computer uses positive and negative feedback to improve its own 
performance. Since its development, reinforcement learning has been applied to a wide 
variety of concepts, including computer-driven stock trading4, teaching a computer how to 
play video games5, and teaching robots how to move around in an environment6.
 A paper that is considered the foundation of reinforcement learning theory is work 
published by Rescorla and Wagner in 19727, who for the first time provided a quantitative 
explanation for conditioning by showing that ‘surprise’, i.e., a difference between anticipated 
and actually received reward, is the driving force behind learning. This theory was later 
extended by Sutton and Barto8,9 to learning from rewards that are temporally separated 
from its predictive cue or preceding action. The essence of this behavioral approach to 
reinforcement learning is that an organism makes decisions in order to maximize reward in 
the long term. For example, if a hungry rat performs a behavioral task in an operant cage, it 
tries to earn as many rewards (e.g., food pellets) as possible. 
 In humans, decision making behavior entails a complex process in which the 
gains and costs associated with different courses of action at any particular moment in 
time are compared in order to maximize reward. Such a reward can be anything, from the 
consumption of a delicious snack to maximizing profits during a night in the casino, to 
going to college in order to achieve long-term wealth and safety. As in other organisms, 
reinforcement learning plays a mediating role in these decision-making processes; for each 

possible action, one makes a cost/benefit analysis on the basis of previous experiences. 
These costs and benefits are adjusted for its probability of occurrence and expected timing 
of the outcomes. For example, when you want to buy a tasty dessert, you consider the 
direct reward associated with the consumption, and penalize this in some way for the direct 
financial costs of the purchase, as well as the long-term health consequences of the dessert. 
As such, for every decision you make, the pros and cons will be weighed into a net expected 
value which will determine whether you will perform a certain action or not (which logically 
often results in doing nothing).

Neuronal value signals
Given the large number of decisions an organism has to make on a daily basis, one would 
expect that a large part of our brain is dedicated to value coding, feedback integration, and 
value comparisons. In the past decades, many of such value-related brain signals have 
been observed using various neuroimaging and neuronal recording techniques. A formal 
distinction can be made between a reward signal, in which neuronal activity changes during 
reward delivery, and a reward prediction error signal, in which neuronal activity changes 
in response to the ‘surprise’ associated with unexpectedly occurring reward or rewarding 
stimuli. 
 A value signal is a special case of a reward signal that scales with the subjective 
intensity of the reward. This intensity can reflect both differences in quantity (a bigger reward 
will yield a higher neuronal response) and quality (a better reward will yield a higher neuronal 
response). Furthermore, these value signals could, in principle, represent a net expectation, 
i.e., the expected value associated with a certain action after subtraction of its costs (i.e., 
effort and aversive consequences). One could logically assume that in order to make such 
computations, there must be some sort of common currency, i.e., a single “one size fits 
all” scale of value, that can be used to compare choice options of different modalities (for 
example, choosing between coffee and a banana).
 Evidence in favor of neuronal value coding in such a common currency comes from 
a landmark study by Padoa-Schioppa & Assad (2006)10, who performed single unit recordings 
in the orbitofrontal cortex of rhesus monkeys. Animals could choose between two types of 
juices that differed in taste and were offered in different quantities on a visual screen, and 
the monkeys could make a choice between a left and right offer by making eye movements. 
They found that during the choice process, the majority of neurons in the orbitofrontal cortex 
encoded some aspect of the choices the monkeys made. These neurons either encoded 1) 
the quantity of one of the offered juices, 2) the value (a combination of taste and amount) 
of the chosen juice, or 3) the taste of the chosen juice (a binary response to one of the two 
juices during reward delivery). In a follow-up study, these authors demonstrated that the 
neuronal responses to an offered or chosen reward did not depend on which other rewards 
were offered at the same time11. Collectively, these data point towards orbitofrontal cortex 
neurons encoding aspects of choice in a single, common value measure that can compare 
qualitatively different options. A recent study showed that during deliberation of a binary 
choice, these orbitofrontal cortex neuronal ensembles that encode the two different option 
values alternate in activity, suggesting that these neurons are directly involved in weighing 
choice options12. Similar forms of economic value coding have later been found in the 
ventromedial region of the prefrontal cortex of monkeys13. Despite various efforts, no direct 
evidence has thus far been found that individual brain cells of rodents encode value in a 
single, common scale.
 Whether these neuronal value signals are subsequently compared and courses of 
actions selected by distinct, downstream brain regions remains a matter of debate14,15. In 
contrast to the modular view on economic choice, in which each brain region controls one 
chain of the choice process, some researchers have proposed that during decision making, 
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multiple brain regions compute value components of choice independent of each other16-18. 
A parallel is drawn with the distributed decision making of bee swarms: when looking for a 
potential new hive site, the bees make a choice for a new site in concert, through a distributed 
consensus, emerging from the information gathered by individual bees19. Likewise, different 
brain areas evaluate, compare and/or select different choice options, and a choice emerges 
as a result of the interactions of these regions on a circuit level16,18. One paper20 suggested 
that different brain regions have a role in disentangling the different aspects of choice from 
its sensory information, very similar to how the visual system delineates visual imageries. As 
a result, brain regions involved in decision making encode abstract decision making variables 
that each retain components of the value of the options and thus physiologically demonstrate 
value correlates. This may explain why reward signals have been observed throughout the 
brain, and suggests that there is no final common pathway for choice selection, but that 
value signals converge at multiple points to eventually compete for execution in the motor 
system. 
 There is substantial evidence that aversive stimuli are also explicitly coded in the 
brain. For example, lateral habenula neurons have shown to increase activity in response 
to unexpected punishment and decrease activity in response to unexpected reward21,22. 
Furthermore, a subpopulation of basolateral amygdala neurons projecting to the central 
amygdala are primarily activated by aversive stimuli, and these have been shown to be 
essential for fear conditioning23,24. The regions implicated in processing aversive stimuli are 
partially overlapping with the regions involved in processing rewarding stimuli, and include 
the nucleus accumbens, septum, prefrontal cortex, amygdala and hippocampus25.

Reward prediction error signals
During value-based learning, expectations of reward after actions and stimuli (regardless 
whether this is encoded in a common scale of value or not, and whether this is processed 
in series or in parallel) are updated on the basis of experiences, creating an up-to-date 
representation of reward value of the surrounding world that is necessary for making 
profitable decisions. As postulated by reinforcement learning theories, this updating process 
may be guided by prediction errors, or ‘surprise’, computed by subtracting the received reward 
from the cached reward expectation:

Reward prediction error = Reward received - Reward expected    (1)

As such, when a reward is better than expected (i.e., a positive reward prediction error), the 
value associated with the action or stimulus that preceded that reward should be increased, 
and when a reward is worse than expected or when explicit punishment has occurred (i.e., 
a negative reward prediction error), the value of the preceding action or stimulus should be 
decreased.
 Thus, a reward that is fully predicted by a preceding sensory stimulus will not 
evoke a neuronal response during the reward itself, as the surprise (i.e., reward prediction 
error) associated with that reward will be 0. Neurons that encode reward prediction errors 
will therefore, after extensive learning, only show changes in activity during the conditioned 
stimulus that precedes the reward or punishment, but not the unconditioned stimulus itself 
(Figure 1). Conversely, when an expected reward is not delivered, or when explicit punishment 
is delivered, a negative reward prediction error occurs, resulting in a reduction in firing rate. 
Such positive and negative reward prediction errors are thought to be important mediators 
of approach and avoidance learning, respectively26-28.
 Although theoretically and physiologically distinct, it can be quite challenging 
to discern experimentally between reward signals, reward prediction error signals, and 
for example general responses to salient stimuli (Figure 1). To have a full transfer of the 

neuronal signal from the unconditioned to the conditioned stimulus, animals need to have 
fully learned the association (which may require a long training period), the environment 
should be perfectly predictable, and timing of the occurrence of the unconditioned stimulus 
by the experimental subject should be precise. Many studies report neuronal activation 
during both the conditioned and unconditioned stimuli (e.g., refs. 24,29,30), suggesting that 
these requirements have not been met or that mixed neuronal signals have been recorded.

The role of dopamine
Although neuronal signals with characteristics of reward prediction error have been found 
across a wide range of brain areas27,31, the neurocomputationally most pure and perhaps 
behaviorally most essential form of prediction error coding is found in dopamine cells in 
the midbrain31,32. A large proportion of these neurons have been shown to increase firing 
in response to better-than-expected reward, to decrease firing in response to worse-than-
expected reward or explicit punishment, and to show no change in firing when reward is fully 
predictable — an observation that has been reported in a wide range of species including 
humans33, monkeys34,35 and rodents32,36. In the last decades, dopamine neurons have therefore 
emerged as a prime candidate in mediating reinforcement learning. 
 The first major evidence for an involvement of dopamine in reward processing came 
from influential work in 1954 from Olds and Milner that showed that animals vigorously 
lever press in exchange for electrical stimulation of limbic brain structures37 (Figure 2), a 
phenomenon now known as intracranial self-stimulation. Although this first experiment was 
not performed directly in the dopamine system, follow-up studies showed that intracranial 
self-stimulation was strongest for midbrain dopamine nuclei and connected regions, and 
that half of all the brain regions for which animals showed self-stimulation were directly 
connected to dopamine neurons38-41. A role for dopamine in mediating reinforcement was 
further suggested by a series of studies that showed that operant responding for natural 
rewards and addictive drugs could be attenuated by pharmacological blockade of dopamine 
receptors in the brain42-44.
 Interest in dopamine sparked when Schultz and colleagues26 made an exciting 
discovery in the 90’s: they found neuronal correlates of reward prediction errors in midbrain 
dopamine neurons of monkeys, exactly as predicted by Rescorla and Wagner7 more than 
two decades earlier, and in accordance with Sutton and Barto’s temporal difference learning 
model8,9. This discovery was an important step in the understanding of dopamine function 

Before learning After learning

Reward signal

RPE signal

CS        US CS        US

After learning,
reward omitted

CS        US

Salience signal

Figure 1: Reward and reward prediction error (RPE) signals in the brain. After extensive training, 
reward prediction errors signals will only emerge during the conditioned (CS; predictive cue), but 
not unconditioned (US; reward) stimulus.
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and suggested a direct role for dopamine neurons in reward and punishment learning, 
thereby mediating motivation and decision making28,41,45.
 Although the importance of dopaminergic prediction errors to learning was quickly 
acknowledged, their sufficiency for learning has been confirmed only recently, employing 
optogenetic tools in rodents. In their study, Steinberg et al. (2014) demonstrated that brief 
optogenetic activation of VTA dopamine neurons was able to drive learning of the association 
between a conditioned stimulus and reward46. They further showed that activation of 
dopamine neurons during the time of expected reward delivery slowed extinction learning, 
together suggesting that artificial positive reward prediction error is sufficient to drive 
appetitive learning. Conversely, Chang et al. (2015) showed that brief optogenetic inhibition 
of VTA dopamine neurons of mice was sufficient to mimic negative reward prediction error 
and thereby drive avoidance learning47. Finally, Saunders et al. (2018) demonstrated that 
optogenetic excitation of VTA dopamine neurons during a cue was sufficient to attribute 
incentive motivational value to that cue, even in the absence of natural reward, and showed 
that this was driven by dopaminergic neurotransmission in the core region of the nucleus 
accumbens48.
 To compute reward prediction error, a system needs, by definition, information about 
the reward it expects. Takahashi et al. (2011) studied whether midbrain dopamine neurons 
receive this information from the orbitofrontal cortex by measuring reward prediction error in 
the ventral tegmental area during a reward-learning task in rats with and without a neurotoxic 
lesion of the lateral orbitofrontal cortex49. They observed that both positive and negative 
reward prediction error coding in the ventral tegmental area was attenuated by the lesion. 
However, the pattern of observed effects did not match the hypothesis that the lesioned 
part of orbitofrontal cortex conveyed a pure value signal to the dopamine neurons, as the 
authors demonstrated by simulating electrophysiological data with reinforcement learning 
models. More recent work suggests that dopamine neurons use value information from a 
wide range of areas to compute prediction errors32. Wherever these value signals arise from, 
electrophysiological evidence suggests that dopamine neurons use subtraction to compute 
the prediction error from the expected and received reward, and that inhibition by GABA 
neurons of the ventral tegmental area facilitate this computation50.

 Despite the apparent homogeneity of prediction error responses in midbrain 
dopamine neurons in some studies51, it must be noted that since the development of 
genetic tools for neural circuit dissection, an increasing number of studies points towards 
heterogeneity in dopamine cells with regards to connectivity, morphology, gene expression 
and function48,52-54. Furthermore, reward-related responses of individual dopamine neurons 
have been shown to encode aspects of motor behavior55,56, suggesting that prediction errors 
are not encoded as mathematically pure as was thought before. That said, the importance of 
dopamine and dopaminergic reward prediction error to value-based learning has been one of 
the most well-established principles in recent neuroscientific history28,31,44,57,58.

A neuroeconomic approach to motivation
One aspect of reward-related behavior for which dopamine is critical is motivation59,60. 
Although different authors use slightly different definitions of this term60, motivation usually 
refers to the willingness to work for something. This can be the receipt of reward, but also 
the avoidance of a punisher. As such, when dopamine in the brain is depleted, animals will 
cease to actively search for food (and eventually starve to death), but they will still consume 
food when it is placed in their mouth61. Berridge and Robinson therefore proposed a useful 
distinction between the ‘liking’ (i.e., experiencing pleasure) and ‘wanting’ (i.e., the motivation) 
of reward62,63, and it has been suggested that dopamine is mainly involved in the latter60.
 In neuroeconomic terms, motivation is thought of as the subjective experience 
that a certain action is worth pursuing. The value of such an action can be described by 
an economic utility function64, so that every time a organism considers a certain action, a 
computation is performed where the subjective experience of the costs (labor and negative 
consequences, corrected for the probability of occurrence) is subtracted from the expected 
reward that follows from that action (receiving food, sex, drugs or shelter, or avoiding 
punishment, corrected for probability)65, yielding the net expected reward value associated 
with that action:

Net expected reward  =  ∑ rewardsubjective - ∑ costssubjective      (2)

Only when this calculation has a positive outcome, an action is pursued, as the expectation of 
reward is higher than its cost. Conversely, when the outcome of this calculation approaches 
0 or becomes negative (when costs > reward), no action is taken. The subjective reward term 
in this equation (∑ rewardsubjective) can be seen as the expectation of pleasure associated with 
reward (‘liking’), and the outcome of the equation is proportional to motivation (‘wanting’), 
so that:

Motivation  ∝  ∑ rewardsubjective - ∑ costssubjective
      (3)

 For example, whether an animal will start foraging for food depends on several 
factors. First, it depends on the amount of food it expects to receive, which is the total food 
that is expected to be obtained from the environment (∑ reward). Second, it depends on 
to what extent the food is appreciated; a satiated animal will appreciate food less than a 
hungry animal. Hence, the objective reward expectation ∑ reward should be multiplied with 
a subjectivity factor that reflects the metabolic and hedonic state of the animal, leading to 
a subjective reward value ∑ rewardsubjective. Conversely, the costs of foraging depends on the 
effort the animal has to make to seek for food and the dangers associated with food seeking 
(i.e., the probability of explicit negative consequences, like a predator attack). Again, this 
factor should be corrected for subjectivity, leading to a subjective cost factor ∑ costssubjective. 
When the expected reward outweighs the costs, the animal will start foraging. Logically, 
subjective reward value increases with hunger (a meal tastes much better when you’re 

Figure 2: Images from the original Olds & Milner paper who for the first time demonstrated that animals 
will lever press for electrical stimulation of limbic brain structures. a) X-ray image of a rat with an 
electrode implant. b) Learning curve of an animal implanted with an electrode in the septal area making 
lever presses for electrode stimulation.
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hungry), so that even in a dangerous environment, reward will at some point outweigh costs, 
and the motivation to start to seek for food will increase. Furthermore, influential economic 
and psychological theories state that rewards and costs that are further in the future or that 
are less likely to be received are discounted, i.e., its subjective value is reduced with time 
and probability — a process known as temporal or probability discounting, respectively66-69. 
Hence, equation 3 can be rewritten as:

Motivation   ∝   ∑ sreward * γreward * reward   -   ∑ scosts * γcosts * costs     (4)

in which s represents a subjectivity factor that scales the reward/cost on the basis of the 
animal’s intrinsic state and desires, and γ a discounting factor that is low when the rewards 
or costs are further away in the future or are less likely to occur.
 This simple framework of motivation may help structuring our understanding of 
phenomena that are associated with reward seeking and motivation. For example, the vast 
increase in the prevalence of obesity in the Western world70 is thought to arise from the 
difficulty to make healthy food choices and the fact that it is hard to lose weight71. In our 
society, the costs associated with food intake are radically different than they have been 
for the past millennia and different than for animals in the wild. For animals and premodern 
man, the costs mainly comprised the physical effort and the dangers that were associated 
with hunting and other forms of foraging. For modern man, given the abundance of food, the 
costs comprise the financial costs of the food and the negative health consequences that 
are associated with food intake. Given that food is usually directly available, equation 4 can 
be given by:

Motivation   ∝   s * [food reward]   -   s * γ * [health consequences] - s * [financial costs]  (5)

Despite the potential severity of the health consequences of palatable foods, they often 
develop over a longer period of time and are thus not immediately noticed. This discounts 
the subjective experience of the negative health consequences to a negligible level, 
except perhaps when someone has low temporal discounting characteristics. Indeed, trait 
impulse control, closely associated to temporal discounting capacity, is predictive for the 
maintenance of overweight in children72 and adults73. An additional point is that unhealthy 
foods, high in carbohydrates and fat, are usually cheaper than healthy foods, adding an 
extra costs factor to the equation, thereby decreasing the motivation to make healthy food 
choices — a factor that may especially play a role in people with a low income74. Thus, the 
direct reward of palatable food and the absence of any direct costs associated with its 
intake makes it ostensibly unprofitable to make healthy food choices. Limiting palatable 
food intake is especially hard during dieting, as this in fact increases sensitivity to food 
reward75,76, making the left side of this equation more dominant.
 A second useful application of this framework is to understand drug addiction and 
the fact that some people are more prone to develop this mental disorder than others. Every 
time a drug user gets reminded of drugs (by cravings, cues or social pressure), he or she will 
make a decision to take drugs or not. Considering the expectation of reward from the ‘high’ of 
the drug and the negative consequences of drug use (financial costs, hangovers, long-term 
health consequences and consequences for social obligations), equation 4 can be written 
as:

Motivation  ∝  s * [high]    -   s * γ * [financial costs]
        -   s * γ * [hangover]
        -   s * γ * [health consequences]
                       -   s * γ * [social consequences]      (6)
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Given this list of costs associated with prolonged drug use, it is not surprising that only 
a small fraction of recreational drug users eventually develops addiction77. Based on this 
equation, however, several risk factors can be derived for the development of addiction. First, 
increased expectation sensitivity to the ‘high’ of the drugs (note that this is different from the 
actually received pleasure from the drugs), which would strengthen the left side of equation 
6. Second, low baseline levels of the costs factors — that is, a poor social life, no job or 
study, and bad health —, making the costs of drug use low. Third, a low value of temporal 
discounting factor γ (i.e., discounting of subjective value over time is stronger). Indeed, 
clinical and preclinical studies have demonstrated that all of these factors increase the risk 
for the development of addiction77-80. Additionally, negative consequences of repeated drug 
use directly decrease baseline levels of health and social life, essentially decreasing the cost 
factors in this equation, thus making future drug taking more tempting. Furthermore, cocaine 
administration itself chronically strengthens temporal discounting capability81,82, indicating 
that dopaminergic drugs directly increase the motivation to take drugs.

Implications for psychiatry
Abnormalities in the brain circuits involved in value processing, motivation and decision 
making have been implicated in a wide variety of neuropsychiatric disorders. For example, 
dysfunctions in the dopamine system have been implicated in depression83-85, addiction44,86, 
bipolar disorder87,88, ADHD89,90 and schizophrenia91 — not the least because most of the 
effective pharmacotherapies for some of these diseases target the dopamine system. 
Moreover, dysfunction of the prefrontal cortex, another important region for value-based 
decision making, has been implicated in a partially overlapping set of disorders, including 
addiction, impulse control disorders, depression, schizophrenia, autism and ADHD. Besides 
dysfunctions in these brain circuits, altered value-based decision making has been observed 
in all of these patient groups92-101, an indication that alterations in value processes might be 
involved in the etiology of these diseases. Whether this relationship is causal and driven 
by miscalculations on a neuronal level remains a challenging question in neuroscience, 
although remarkable progress has been made in this regard.
 For example, it has been suggested that depression at least partially arises 
from unrealistically low reward expectations, mainly due to pessimistically set priors 
(i.e., assumptions), although it has been shown that abberations in model-free learning 
mechanisms, as assessed by classical reinforcement learning models, are likely not involved 
in the pathophysiology of the disease102. Furthermore, neurocomputational models predicted 
that the reckless and overoptimistic decision-making behavior after levodopa treatment 
in Parkinson’s disease patients is induced by impaired prediction error learning due to 
overstimulation of striatal dopamine receptors103,104. This hypothesis has been supported 
by several clinical studies105-107 and may be of potential impact on the understanding of 
mania, as this mental state is also associated with elevated dopamine levels96,108. A third 
example is anxiety, which has been suggested to result from increased threat avoidance due 
to an overestimation of the probability and magnitude of aversive outcomes, a mechanism 
that may arise from alterations in brain areas involved in learning and value-based decision 
making, like the amygdala and anterior cingulate cortex109.
 The recent emergence of several new methods for computational analyses, large-
scale neuronal recordings and neuronal manipulations now allow for a precise investigation 
of the neural circuits involved in reward and punishment processing. Based on recent 
findings employing these techniques, it is obvious that the neuronal circuits involved are 
more heterogeneous than previously thought, suggesting that we have only just begun to 
elucidate the computational basis of neuropsychiatric disorders.
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Outline of this thesis
The aim of this thesis is to gain insight into the neurocomputational basis of decision-
making, and specifically how learning from reward and aversion shapes choice behavior. 
To achieve this, we combined several decision-making paradigms with chemogenetics, 
behavioral pharmacology, fiber photometry and computational methods. 
 Chapters 2 through 5 mainly focus on the learning component of value-based 
decision making. In chapter 2, we study the neural basis of the aberrations in choice behavior 
that are associated with an abundance of dopamine in the brain, for example during mania, 
the ‘high’ of drugs of abuse, and dopamine replacement therapy in Parkinson’s disease. We 
specifically test a theory based on a neurocomputational model of striatal function that 
implicates impaired negative reward prediction error processing in these decision making 
deficits. In chapter 3, we study the contribution of different regions of the prefrontal cortex 
to value-based learning, by pharmacological inactivating these regions in rats during a value-
based learning task. Employing this same task, in chapter 4 we describe how treatment with 
dopamine receptor agonists and antagonists affects value-based learning, thereby trying 
to pinpoint receptor-specific contributions to the negative feedback learning effect that we 
describe in chapter 2. To demonstrate that value-based learning is a dynamic process that is 
dependent on the state of an organism, we show in chapter 5 that computational processes 
that underlie this behavior fluctuate across the estrous cycle of female rats.
 Chapters 6 through 9 focus more on the motivational aspects of value-based 
decision making, with a special focus on maladaptations in the systems that regulate food 
intake. In chapter 6, we describe behavior in a task that can be seen as a form of irrational 
decision-making, namely loss of control over behavior when a choice has to be made between 
pursuing reward and avoiding punishment. We show proof-of-concept by combining the 
task with pharmacological inactivations of different regions of the corticolimbic system, 
and show that inhibition of reward pursuit requires the coordinated action of a network 
of structures in this system. We further utilize this behavioral task in chapter 7, where we 
combine it with different viral and pharmacological techniques to elucidate the role of the 
dopamine system in behavioral control. In chapter 8, we study salt appetite, and the extent to 
which midbrain dopamine neurons mediate this process. Salt appetite refers to the fact that 
salty solutions are normally considered aversive, but suddenly become appetitive when the 
body is in a sodium-depleted state. This switch in salt appreciation may teach us a lot about 
the flexibility of brain reward systems. Furthermore, we present an experimental human 
study in chapter 9, in which we investigate decision making in anorexia nervosa patients, by 
means of computational modeling of a dataset of a large cohort of patients that performed 
the Iowa Gambling task. Finally, I will discuss the findings from this thesis and try to place it 
into existing literature in the Discussion. 

Box 1 
A brief history of research on reward, aversion and motivation

1848 Harlow publishes the case report on Phineas Gage, providing the first 
experimental evidence for a role of the prefrontal cortex in executive 
behaviors, including decision making.

1898 In his Law of effect, Thorndike states that animals learn through trial and 
error, an important step in the postulation of operant conditioning theory.

1927 Pavlov formulates his associative learning theory on the basis of his 
famous dog experiment.

1938 Skinner publishes The behavior of organisms, including the influential theory 
on operant conditioning.

1946 Tolman challenges earlier conditioning theories by stating that learning can 
also occur in the absence of reward or punishment (i.e., stimulus-stimulus 
learning).

1954 Olds and Milner discover that rats will work for electrical stimulation of 
certain brain areas, a phenomenon now known as intracranial self-
stimulation.

1972 Publication of the influential reinforcement learning theory of Rescorla and 
Wagner, proposing that prediction errors drive learning.

1982 Dickinson performs a set of experiments in rats that demonstrate a distinction 
between goal-directed and habitual behavior.

1981 Sutton and Barto publish computational models that explain temporal 
difference learning.

1997 The first measurement of reward prediction error signals in dopamine 
neurons of monkeys by Schultz.

1998 Berridge and Robinson propose their incentive salience theory of dopamine 
function, introducing the dichotomy between ‘wanting’ and ‘liking’.

2007 Boyden, Deisseroth, Roth and others develop viral tools to manipulate brain 
activity: start of the era of neural circuit dissection. 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Techniques used in this thesis

Chemogenetics

Chemogenetics or DREADD (Designer Receptor 
Exclusively Activated by Designer Drugs) is a viral 
tool used to manipulate brain activity in a cell type- or 
projection-specific manner. DREADDs are mutated 
receptors that, after activation by its ligand clozapine-N-
oxide (CNO), can depolarize (activation; Gq DREADD) or 
hyperpolarize (inhibition; Gi DREADD) a cell. The genes 
for DREADD expression are delivered by an intracranial 
injection of an adeno-associated virus.

Used in chapters 2 and 7.

Behavioral pharmacology

Behavioral pharmacology refers to the use of 
biologically active agents to study the contribution of 
certain brain areas, receptors and cell types to behavior. 
Typically, receptor agonists and antagonists are injected 
systemically or infused through cannulas that are 
implanted above a brain area of interest.

Used in chapters 2, 3, 4, 6, 7 and 8.

Fiber photometry

Fiber photometry is a method to measure neuronal 
activity in living animals using calcium-dependent 
fluorescent proteins (genetically encoded calcium 
indicators; GCaMPs). After viral delivery of these 
GCaMPs, a fiber is implanted above the transfected cell 
bodies, capturing the bulk fluorescence, which can be 
used as a measure for neuronal population activity.

Used in chapters 2, 7 and 8.

Cre-lox

The Cre-lox system is a genetic tool to achieve cell-
type or projection specificity in gene expression. If a 
Cre-dependent viral vector is used, the gene of interest 
will only be expressed in cells that express the protein 
Cre. For example, by injecting a Cre-dependent virus in 
tyrosine hydroxylase (TH)::Cre animals, a viral construct 
will only by expressed in TH-positive cells (i.e., cells 
that produce the neurotransmitters dopamine and 
noradrenaline).

Used in chapters 2, 7 and 8.

Microdialysis

Microdialysis can be used to measure the extracellular 
concentrations of different types of molecules (such 
as dopamine). A semi-permeable probe is placed into 
the brain through which a fluid is perfused. Molecules 
present in the extracellular space will diffuse into 
the liquid inside this probe, and this liquid can be 
collected and analysed using high-performance liquid 
chromatography.

Used in chapter 2.

Computational modeling

Computational modeling is an umbrella term used to 
indicate that an algorithm was used to find patterns in 
complex data.

Used in chapters 2, 3, 4, 5 and 9.

Gq

0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 
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cFos immunoreactivity

cFos is an immediate early gene that is expressed in 
most neurons after depolarization. cFos protein levels 
peak ~90 minutes after neuronal activation and can be 
visualized using immunohistochemistry to get a readout 
of brain activity.

Used in chapters 7 and 8.
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Hyperdopaminergic states in mental disorders are associated with 
disruptive deficits in decision-making. However, the precise contribution 
of topographically distinct mesencephalic dopamine pathways to decision-
making processes remains elusive. Here we show, using a multidisciplinary 
approach, how hyperactivity of ascending projections from the ventral 
tegmental area (VTA) contributes to impaired flexible decision-making 
in rats. Activation of the VTA-nucleus accumbens pathway leads to 
insensitivity to loss and punishment due to impaired processing of negative 
reward prediction errors. In contrast, activation of the VTA-prefrontal cortex 
pathway promotes risky decision-making without affecting the ability to 
choose the economically most beneficial option. Together, these findings 
show how malfunction of ascending VTA projections affects value-based 
decision-making, providing a possible mechanism through which an 
abundance of dopamine may lead to aberrations in behavior, as is seen 
in substance abuse, mania, and after dopamine replacement therapy in 
Parkinson’s disease.

Introduction
Impaired decision-making can have profound negative consequences, both in the short and 
in the long term. As such, it is observed in a variety of mental disorders, such as mania1,2, 
substance addiction3-6, and as a side effect of dopamine (DA) replacement therapy in 
Parkinson’s disease7,8. Importantly, these disorders are associated with aberrations in 
DAergic neurotransmission9,10, and DA has been implicated in decision-making processes11-13. 
However, ascending DAergic projections from the ventral mesencephalon are anatomically 
and functionally heterogeneous14-16 and the contribution of these distinct DA pathways to 
decision-making processes remains elusive. 
 The mesocorticolimbic system, comprising DA cells within the ventral tegmental 
area (VTA) that mainly project to the nucleus accumbens (NAc; mesoaccumbens pathway) 
and medial prefrontal cortex (mPFC; mesocortical pathway), has an important role in value-
based learning and decision-making14-16. When an experienced reward is better than expected, 
the firing of VTA DA neurons increases, thereby signaling a discrepancy between anticipated 
and experienced reward to downstream regions. Conversely, when a reward does not fulfill 
expectations, DA neuronal activity decreases. This pattern of DA cell activity is the basis of 
reward prediction error (RPE) theory17-20, which describes an essential mechanism through 
which organisms learn to flexibly alter their behavior when the costs and benefits associated 
with different courses of action shift. Although the relevance of RPEs in value-based learning 
is widely acknowledged, little is known about how different VTA target regions process these 
DA-mediated error signals, and how this ultimately leads to adaptations in behavior.
 Here, we used projection-specific chemogenetics combined with behavioral tasks, 
pharmacological interventions, computational modelling, in vivo microdialysis and in vivo 
neuronal population recordings to investigate how different ascending VTA projections 
contribute to value-based decision-making processes in the rat. Specifically, we investigated 
the mechanism underlying the aberrant decision-making style that is associated with 
increased DA neuron activity. We hypothesized that hyperactivation of VTA neurons 
interferes with reward prediction error processing, leading to impaired adaptation to reward 
value dynamics. We predicted an important contribution of the mesoaccumbens pathway 
in incorporating experienced reward, loss and punishment into future decisions, considering 
the importance of the NAc in reinforcement learning and motivated behaviors21-23, and a 

Figure 1 Treatment with cocaine or D-amphetamine impairs reversal learning. (a) Task design. (b) 
Systemic treatment with cocaine (10 mg/kg) or D-amphetamine (0.25 mg/kg) did not alter the number 
of trials required to reach the first reversal (1-way RM ANOVA, p = 0.55), but decreased the total 
number of reversals accomplished (ANOVA, p = 0.0037; post-hoc Sidak’s test, p = 0.0102 cocaine 
vs. saline, p = 0.0197 D-amphetamine vs. saline). (c) Treatment with cocaine or D-amphetamine did 
not alter perseverative behavior (p = 0.46). (d) Lose-stay behavior was unaffected after cocaine and 
D-amphetamine treatment, both before (p = 0.21 †) and after (p = 0.77) first reversal. Cocaine and 
D-amphetamine decreased win-stay behavior after (ANOVA, p = 0.0007; post-hoc Sidak’s test, p = 0.0009 
for cocaine vs. saline, p = 0.0336, D-amphetamine vs. saline), but not before the first reversal (p = 0.67). 
Data in (b),(c),(d) and (g): repeated measures from n = 25 animals. † 6 animals had no losses before 
the first reversal, so the ANOVA was performed on data of n = 19 animals; graph shows n = 25. (e) We 
used a modified Rescorla-Wagner model to describe the behavior of the rats during reversal learning. 
(f) Simulated data from an example session. (upper panel) Simulated values of the nose pokes, given 
the rat’s optimal model parameters and observed choices. (lower panel) Modeled choice probabilities, 
converted from the simulated nosepoke values using a softmax (unsmoothed), and the rat’s actual 
choice pattern (smoothed over 7 trials). (g) Best-fit learning parameters. Treatment with cocaine and 
D-amphetamine significantly decreased αloss, without affecting the other model coefficients. (Wilcoxon 
signed rank test, * p = 0.032, ** p = 0.0046, see Table S2) (h) Simulating data with the model parameters 
extracted in (g) replicated the drug-induced effects of the behavioral data shown in (b) and (d). (n = 25 
simulated rats). Data are shown as mean ± s.e.m.
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modulatory role for the mesocortical pathway in value-based choice behavior, given its 
involvement in executive functions, such as decision-making and behavioral flexibility24,25. 
Furthermore, we tested an explicit prediction based on a neurocomputational model of the 
DA system, in which impaired negative RPE processing is involved in learning deficits during 
DA replacement therapy7,26.

Results
Dopaminomimetic drugs impair serial reversal learning
To test the role of DA in flexible value-based decision-making, rats were tested in a serial 
reversal learning task following systemic treatment with the DA neurotransmission 
enhancers cocaine and D-amphetamine. A reversal learning session (Fig. 1a) comprised 150 
trials, and started with the illumination of two nose poke holes in an operant conditioning 
chamber. One of these was randomly assigned as active, and responding in this hole resulted 
in sucrose delivery under a fixed-ratio (FR) 1 schedule of reinforcement. When animals had 
made five consecutive correct responses, the contingencies reversed so that the previously 
inactive hole now became active, and vice versa. 
 Injection of either drug did not affect the number of trials needed to reach the 
criterion of a series of five consecutive correct responses (Fig. 1b, left panel). However, the 
number of reversals achieved in the entire session was significantly reduced in the drug-
treated animals (Fig. 1b, right panel, and Fig. S1a). Thus, cocaine and D-amphetamine 
impaired task performance, but this effect did not appear until the moment of first reversal. 
We reasoned that this pre- and post-reversal segregation in drug effects on task performance 
is related to the structure of the task (Fig. 1a). That is, after every reversal, the value of 
the outcome of responding in the previously active hole declines, and conversely, the value 
associated with responding in the previously inactive hole increases. Accordingly, this task 
entails a combination of devaluation and revaluation mechanisms following reversals.
 To understand the nature of the drug-induced deficit in reversal learning 
performance, we analyzed the animals’ behavior in more detail. Perseverative responding, 
i.e. the average number of responses in the previously active hole directly after a reversal, 
was not altered after cocaine or D-amphetamine treatment (Fig. 1c). Lose-stay behavior, 
i.e., the percentage of (unrewarded) trials in the inactive nose poke hole followed by a 
response in the (still) inactive hole, was also not affected (Fig. 1d, left panel). However, win-
stay behavior, i.e., the percentage of responses in the active nose poke hole after which 
the animal responded in that same active hole, was significantly decreased after treatment 
with cocaine or D-amphetamine (Fig. 1d, right panel). This drug-induced reduction in win-
stay behavior indicates that even though the animals received a reward after responding in 
the active nose poke hole, they next sampled the inactive hole more often than after saline 
treatment. Importantly, win-stay behavior was only reduced after reversal, indicating that 
behavioral impairments were not the result of a general decline in task performance or 
sensitivity to reward.
 Overall, the effects in the reversal learning task indicate that increased DA signaling 
after cocaine or D-amphetamine treatment did not impair the animals’ ability to find the 
active nose poke hole at task initiation, hence to assign positive value to an action. Yet, when 
the values of (the outcome of) two similar actions (that is, responding in a nose poke hole) 
changed relative to each other, drug-treated animals were impaired in adjusting behavior, 
perhaps as a result of a valuation deficit. This suggests that treatment with these drugs 
disrupted the process of integrating recent wins or losses (i.e., a revaluation or a devaluation 
impairment, respectively) in decisions.
 To gain insight into the mechanisms underlying impaired reversal learning, we 
modelled the behavior of each subject by fitting the data to a computational reinforcement 
learning model (Fig. 1e,f and Table S1). We used an extended version of the Rescorla-Wagner 
model27,28, using two different learning rates, ɑwin and ɑloss, describing the animal’s ability to 

learn from wins and losses, respectively29. Such a model-based approach investigates task 
performance based on an extended history of trial outcomes, and not merely the most recent 
outcome, such as win- and lose-stay measures do, providing a more in-depth analysis of the 
learning capacity of the animals.
 When comparing the Rescorla-Wagner model coefficients of the animals after saline 
with those after cocaine and D-amphetamine treatment, we observed a strong decrease in 
parameter ɑloss without affecting ɑwin or choice stochasticity factor β (Fig. 1g,h, Fig. S1b,c 
and Table S2). This indicates that cocaine and D-amphetamine interfere with learning from 
negative, but not positive, RPEs.

Chemogenetic activation of mesoaccumbens pathway impairs reversal learning
In view of the role of DA in RPE signaling, we hypothesized that cocaine and D-amphetamine 
interfered with learning from losses by overactivation of ascending midbrain DA projections, 
thereby disrupting negative RPEs. This same mechanism has been hypothesized to be 
involved in the DA dysregulation syndrome in medicated Parkinson’s disease patients7,30. 
Such an overactivation may lead to an inability to devalue stimuli and/or their associated 
outcomes, resulting in choice behavior that is not optimally value-based. Specifically, we 
were interested in the contribution of projections from the VTA to the NAc and the mPFC to 
impairments in reversal learning.
 In order to activate neuronal subpopulations of the VTA in a projection-specific 
manner, we combined a canine adeno-associated virus retrogradely delivering Cre-
recombinase (CAV2-Cre) and a Cre-dependent viral vector encoding hM3Dq(Gq)-DREADD 
fused to mCherry-fluorescent protein31 (Fig. 2a and Fig. S2). This two-viral approach resulted 
in high levels of DA specificity (80% of the transfected neurons in the mesoaccumbens group 
and 72% of the transfected neurons in the mesocortical group were positive for tyrosine 
hydroxylase, Fig. 2b). To investigate whether the effects of cocaine and D-amphetamine on 
reversal learning were driven by activation of the mesoaccumbens or mesocortical pathway, 
animals were injected with clozapine-N-oxide (CNO) immediately before testing in the 
reversal learning task.
 Chemogenetic activation of the mesoaccumbens pathway resulted in the same 
pattern of impairments in reversal learning as cocaine and D-amphetamine treatment, i.e., 
a reduction in the numbers of reversals achieved, without affecting trials to first reversal 
criterion (Fig. 2c). This pattern was confirmed by plotting the cumulative reversals as a 
function of completed trials (Fig. 2d and Fig. S3a). Similar to cocaine and D-amphetamine, 
the performance impairment during mesoaccumbens activation was associated with a post-
reversal (but not pre-reversal) decrease in win-stay behavior (Fig. 2e), whereas perseverative 
responding and lose-stay behavior were not altered (Fig. 2f and Fig. S3b). Remarkably, 
during mesoaccumbens activation, both win- and lose-stay behavior were around 50% post-
reversal, indicative of random choice behavior. Indeed, the Rescorla-Wagner model fitted with 
a significantly lower likelihood after mesoaccumbens activation (Fig. S3c), indicating that 
the animals’ performance declined such that the model was less able to describe the data 
compared to baseline conditions. In contrast to mesoaccumbens activation, mesocortical 
activation or CNO injection in a sham-operated control group had no effect on reversal 
learning.
 The finding that hyperactivity in the mesoaccumbens pathway evoked similar 
effects on reversal learning as cocaine and D-amphetamine did, suggests that these drugs 
exert their influence on flexible value-based decision-making through DA neurotransmission 
within the NAc. To directly test this, we performed in vivo microdialysis in the NAc of animals 
that expressed Gq-DREADD in the mesoaccumbens pathway (Fig. 2g). Administration of CNO 
increased baseline levels of DA in the NAc, as well as its metabolites 3,4-dihydroxyphenylacetic 
acid (DOPAC) and homovanillic acid (HVA) (Fig. 2h and Fig. S4). Next, we infused the 
DA receptor antagonist α-flupenthixol into the NAc of DREADD-treated animals prior to 
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Figure 2 Chemogenetic activation of the mesoaccumbens, but not mesocortical pathway mimicked 
the effects of cocaine and D-amphetamine on reversal learning. (a) Experimental design. Animals 
received an infusion of CAV2-Cre into either the mPFC or NAc. A Cre-dependent Gq-DREADD virus 
was injected bilaterally into the VTA. (b)  (left panel) Representative histology images showing coronal 
sections stained for tyrosine hydroxylase (left), DREADD-mCherry (middle) and an overlay (right). Image 
bottom left corner from Paxinos and Watson (2007). Scalebar, 500 μm. (right panel) Co-staining of 
mCherry with tyrosine hydroxylase, showing the percentage of DREADD-transfected neurons that is 
dopaminergic (mean ± s.d.). Data from n = 9 (mesoaccumbens), n = 8 (mesocortical) animals. (c) (left 
panel) Activation of either pathway did not affect the number of trials needed to reach the first reversal 
(i.e., 5 consecutive correct responses; two-way repeated measures ANOVA; main effect of CNO, p = 
0.54; group × CNO interaction, p = 0.90). (right panel) Performance on the task over the entire session 
was significantly impaired after mesoaccumbens activation (two-way repeated measures ANOVA; main 
effect of CNO, p = 0.0025; group × CNO interaction, p = 0.0067; post-hoc Sidak’s multiple comparisons 
test, p = 0.89 for control group, p < 0.0001 for mesoaccumbens group, p = 0.99 for mesocortical group) 
(d) Plot of the cumulative reversals over time shows that the performance deficit after mesoaccumbens 
activation does not appear until after the first reversal (Sidak’s multiple comparisons test corrected for 
150 comparisons, p < 0.05 after trial 85). Dashed line indicates first reversal. (e) A significant decrease 
in win-stay behavior after (two-way repeated measures ANOVA; main effect of CNO, p = 0.0040; group 
× CNO interaction, p = 0.0026; post-hoc Sidak’s multiple comparisons test, p = 0.9647 for control group, 
p < 0.0001 for mesoaccumbens group, p = 0.9997 for mesocortical group), but not before first reversal 
(two-way repeated measures ANOVA; main effect of CNO, p = 0.78; group × CNO interaction, p = 0.91) 
was observed during mesoaccumbens activation. (f) Perseverative behavior was not affected (two-way 
repeated measures ANOVA; main effect of CNO, p = 0.89; group × CNO interaction, p = 0.71). All data: n = 
17 control, n = 17 mesoaccumbens, n = 16 mesocortical group. (g) Microdialysis was used to measure 
extracellular concentrations of DA and its metabolites in the NAc after chemogenetic mesoaccumbens 
stimulation. Scalebar, 500 μm. (h) NAc levels of DA and its metabolites were elevated one hour after an 
i.p. CNO injection in DREADD-infected animals compared to controls (post-hoc tests, DA, p = 0.0002; 
DOPAC, p < 0.0001; HVA, p = 0.0008; see also Fig. S4). (i) Prior to reversal learning, animals received 
systemic CNO (or saline) for DREADD stimulation and a microinjection with α-flupenthixol (or saline) 
into the nucleus accumbens. (j) α-flupenthixol itself had no effect on reversal learning, but prevented 
the CNO-induced impairment on reversal learning (ANOVA, p = 0.0024; post-hoc Holm-Sidak’s test: **p 
= 0.0019, *p = 0.0397). Note that animals had a higher baseline of reversals in this experiment, because 
the animals were trained on the task (see Online methods). Abbreviations: Sal, saline; Flup, α-flupenthixol; 
ns, not significant.

chemogenetic activation of the mesoaccumbens pathway in a reversal learning test (Fig. 2i). 
This dose of α-flupenthixol had no effect on reversal learning after systemic saline injection, 
but it restored the effect of chemogenetic activation of the mesoaccumbens pathway to a 
level statistically indistinguishable from saline treatment (Fig. 2j). This finding supports the 
assumption that the effects of mesoaccumbens hyperactivity are mediated through NAc DA 
receptor stimulation.

Dopamine neuron activity during reversal learning
Considering the function of RPEs in value updating20, we tested whether midbrain DA neurons 
tracked the presence of wins and losses in the form of RPEs during reversal learning. To this 
aim, we measured in vivo neuronal population activity from DA neurons in the VTA using fiber 
photometry32 in TH::Cre rats (Fig. 3a and Supplementary Movie 1). 
 Around the time of responding, we observed a clear two-component RPE signal20 
(Fig. 3b,c and Fig. S5), i.e. a ramping of DA activity towards the moment of response, followed 
by an additional value component. That is, win trials were associated with a prolonged DA 
peak, whereas loss trials were characterized by a rapid decline in DA population activity after 
the response was made. No such signals were observed in animals injected with an activity-
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independent control fluorophore (Fig. S5). 
 Since mesoaccumbens hyperactivity only affected task performance after 
reversal, we compared DA activity pre- and post-reversal (Fig. 3c, right panels). In loss 
trials, we observed significantly stronger negative RPEs after the first reversal compared 
to before reversal. In contrast, DA peaks during the win trials were similar before and after 
the first reversal. This supports our notion that the impairment in reversal learning during 
mesoaccumbens hyperactivity was due to selective interference with learning from negative 
RPE-guided feedback.

Mesoaccumbens hyperactivation interferes with adapting to devaluations
To examine whether the effects of mesoaccumbens hyperactivity on learning from negative 
feedback generalizes to conditions beyond reversal learning, we trained rats on a probabilistic 
discounting task (modified from refs. 33 and 34). In this task, rats could choose between 
responding on a ‘safe’ lever, which always produces one sucrose pellet, or on another, ‘risky’ 
lever, which produces a larger reward (i.e., three sucrose pellets) with a given probability. 
Within a session, the chance of receiving the large reward after a response on the risky lever 
decreases across four trial blocks — in the first block, animals always received the large 
reward when pressing the risky lever, whereas the odds of winning were reduced to 1 in 12 in 
the fourth block (Fig. 4a and Fig. S6a). An important difference with reversal learning is that 
in this task, a response shift is not the best option after a loss per se — lose-stay behavior at 
the risky lever may yield the same amount of sucrose as a shift to the safe lever, depending 
on the odds in the trials block. Therefore, an increase in lose-stay or decrease in win-stay 
behavior does not necessarily reflect poor choice behavior.
 After training, the animals showed stable discounting performance, preferring the 
risky lever in the first block, and shifting their choice towards the safe lever when the yield 
of the risky lever diminished (Fig. 4b, left panel). Mesoaccumbens activation (Fig. 4b, middle 
panel) decreased the choice of the risky lever in the first block and increased choice for 
the risky lever in the last block, resulting in a significantly reduced slope of the discounting 
curve (Fig. 4b, middle panel, inset), and a lower percentage of optimal choices (Fig. 4c). 
Importantly, the inability to discount the value of the risky lever in the latter blocks of the 
task is indicative of an inability to adapt to a declining outcome of responding on the risky 
lever (Fig. S6b). The reduced choice for the risky lever in the first block may also be due to 
a devaluation deficit, as the receipt of only one sucrose pellet after responding on the safe 
lever (compared to the three pellet yield of responding on the risky lever) may be perceived 
as a ‘loss’, since the relative value of responding on the safe lever is lower in this block35. In 
contrast, mesocortical activation only increased risk-seeking in the second block, in which 
the yield of the safe (1 pellet) and risky (1 in 3 chance of 3 pellets) levers were equal (Fig. 4b, 
right panel), so that the amount of optimal choices remained unaffected (Fig. 4c). Further 
analysis of task strategy showed that lose-stay behavior at the risky lever was increased 
during activation of the mesoaccumbens and mesocortical pathways, whereas win-stay 
and safe-stay behavior were unaffected (Fig. 4d and Fig. S6c). Thus, activation of both 
ascending VTA projections made animals less prone to alter choice behavior after losses, 
which significantly impaired task performance during mesoaccumbens activation. The 
increase in lose-stay behavior during mesocortical activation is the result of the preference 
for the risky lever in the second trial block, but this did not result in poor choice behavior (Fig. 
4c). 
 To test whether the effects in this task were specific to devaluation mechanisms, 
we trained the animals expressing DREADD in mesoaccumbens neurons on the same task 
with increasing, instead of decreasing odds of reward at the risky lever (Fig. 4e). In this 
condition, mesoaccumbens activation did not significantly change risky choice in any of the 
blocks (Fig. 4f), although a modest but significant decrease was observed in performance 
(i.e. a lower fraction of optimal choices; Fig. 4g) which was caused by a higher preference 
for the risky lever in the first few trials (Fig. S6d). This could be the result of a reduced ability 
of the animals to devalue the outcome of responding on the risky lever in the initial trials of 
the first block. However, since this version of the task primarily relies on revaluation, rather 
than devaluation mechanisms, especially in later blocks (Fig. S6b), a mesoaccumbens 
stimulation-induced devaluation deficit caused no further changes in behavior. Indeed, win-
stay and lose-stay behavior were unaffected by mesoaccumbens activation (Fig. 4g).
 In sum, the effects of chemogenetic activation on the probabilistic discounting task 
support our hypothesis that mesoaccumbens activation results in an inability of animals to 
adapt behavior to lower-than-expected outcomes, which under physiological circumstances 

Figure 3 In vivo fiber photometry in VTA DA neurons during reversal learning. 
(a) Experimental setup. 
(b) Reversal learning session of an example animal. Triangles depict a reversal. Data is time-locked to a 
lever press by the rat and (in win trials) immediate reward delivery. Inset shows area under the curve in 
the first 5 seconds following lever press (unpaired t-test, p < 0.0001). 
(c) Group average. (left panels) VTA DA neurons responded differentially to wins and losses (AUC (inset), 
paired t-test, p = 0.0015). (right panels) Lose trials evoked a stronger negative reward prediction error 
signal after the first reversal compared to before reversal. (AUC (inset), paired t-test, p = 0.0062 for lose 
trials, p = 0.3658 for win trials)
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is mediated by negative RPE signals in DA cells. In contrast, mesoaccumbens hyperactivity 
did not markedly interfere with adaptations to higher-than-expected outcomes. Furthermore, 
mesocortical activation increased risky choice behavior, but only when this was without 
negative consequences for the net gain in the task.

Dopamine pathway activation does not change static reward value
Changes in static reward value may influence behavior in tasks investigating dynamic 
changes in reward value, such as the reversal learning task. For example, food rewards 
may be less or more appreciated due to changes in feelings of hunger, satiety or pleasure. 
Alternatively, operant responding may become habitual rather than goal-directed when 
manipulating the striatum, although this is thought to be mediated by its dorsal parts rather 
than the NAc22,36. 
 To assess whether alterations in static reward value or in the associative structure 
of operant responding contributed to the behavioral changes evoked by DA pathway 
stimulation, rats were subjected to operant sessions in which they could lever press for 
sucrose under an FR-10 schedule of reinforcement. Activation of the mesoaccumbens and 
mesocortical pathways did not alter the total number of lever presses (Fig. 5a), suggesting 
that absolute reward value was unchanged. We also tested animals in operant sessions, 
whereby in half of the sessions the animals were pre-fed with the to-be obtained reward. This 
type of devaluation tests whether animals retain the capacity to adjust operant behavior 
to changes in (the representation of) reward value. Pre-feeding robustly diminished lever 
pressing for sucrose, both in a non-reinforced extinction session, as well as under an FR5 
schedule of reinforcement. Importantly, this effect of chronic devaluation was not affected by 
mesoaccumbens or mesocortical activation (Fig. 5b), indicating that responding remained 
goal-directed36.
 Consistent with previous findings37,38, activation of the mesoaccumbens pathway 
increased operant responding under a progressive ratio schedule of reinforcement39 (Fig. 5c), 
which is often interpreted as reflecting an increased motivation to obtain food37-39. However, in 
light of the present findings, we interpret this finding to reflect that mesoaccumbens hyperactivity 
renders animals less able to devalue the relative outcome of pressing the active lever when 
the response requirement increases over the session, hence leading to increased response 
levels. Such an action devaluation likely involves negative RPE signals from DA neurons.  

Mesoaccumbens hyperactivity evokes punishment insensitivity
To test whether the devaluation deficit as a result of mesoaccumbens hyperactivity also 
resulted in an inability to incorporate explicitly negative consequences into a decision, we 
subjected animals to a novel punishment task, in which reward taking was paired with an 
increasing chance of an inescapable footshock (Fig. 6a). As expected, the introduction 
of this 0.3 mA footshock punishment diminished responding for sucrose, an effect that 
persisted after injection of CNO in the mesocortical and sham control groups (Fig. 6b). In 
contrast, activation of the mesoaccumbens pathway completely abolished this punishment-

Figure 4 Chemogenetic activation of the mesoaccumens and the mesocortical pathway alters 
probabilistic discounting. (a) Task design. (b) Discounting curves for individual groups. (left panel) Sham 
control group (saline vs CNO; Sidak’s test, p > 0.1 for all blocks). (middle panel) During mesoaccumbal 
hyperactivity, animals have a smaller preference for the risky lever in the first block (Sidak’s test, p = 
0.0468), a larger preference for the risky lever in the last block (p = 0.0468; block 2 and 3 both p > 0.1), 
and a significantly diminished discounting rate (inset, p = 0.0002). (right panel). Mesocortical activation 
increased choice for the risky lever in the second block (Sidak’s test in block 2, p = 0.0247; block 1, 3 and 
4, all p > 0.1). Asterisks in discounting curves indicate significant difference between saline and CNO 
treatment. Insets display the average steepness of the discounting curve (statistical comparison with 
Sidak’s test). (c) Mesoaccumbens activation reduces the percentage optimal choices in the probabilistic 
discounting task (i.e., % best choice in blocks 1, 3 and 4; two-way repeated measures ANOVA; main 
effect of CNO, p = 0.0331; group × CNO interaction effect, p = 0.0016; post-hoc Sidak’s test, p = 0.5082 
for control group, p = 0.0004 for mesoaccumbens group, p = 0.7533 for mesocortical group). (d) 
Chemogenetic activation of the mesoaccumbens or mesocortical pathway had no effect on win-stay 
behavior (two-way repeated measures ANOVA; main effect of CNO, p = 0.36; group × CNO interaction 

effect, p = 0.26), but did increase lose-stay behavior (two-way repeated measures ANOVA; main effect 
of CNO, p = 0.0026; group × CNO interaction effect, p = 0.0622; post-hoc Sidak’s test, p = 0.9988, p = 
0.0177 and p = 0.0203 for control, mesoaccumbens and mesocortical groups, respectively). (e) Task 
design of the probabilistic discounting task with increasing probabilities. (f) Mesoaccumbens activation 
did not affect the discounting curve (Sidak’s test in every block, p > 0.1). (g) Mesoaccumbens activation 
decreased performance on the task (paired t-test, p = 0.0143), but not win-stay (paired t-test, p = 0.32) or 
lose-stay behavior (paired t-test, p = 0.85). Data are shown as mean ± standard error of the mean.
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induced reduction in responding, as the animals took as many rewards as under non-
punishment conditions. This finding suggests that during mesoaccumbens hyperactivity, 
reward value is not properly discounted — in other words, animals are not able to take the 
increasingly negative consequences of an action into account. Consistent with a role for 
DA neurotransmission in processing these punishment signals, we observed, using in vivo 
calcium imaging, that footshock evoked a reduction in the activity of VTA DA neurons (Fig. 
6c). 
 To control for effects of nociception in our punishment task, we subjected the animals 
to a tail withdrawal test, and found this not to be affected by mesoaccumbens activation 
(Fig. 6d). Moreover, anxiety, as tested in the elevated plus maze (Fig. S7a,b), was unaffected 
by mesoaccumbens stimulation. Consistent with literature, we found that mesoaccumbens 
stimulation increased locomotion (Fig. S8a), just like cocaine and D-amphetamine do40,41. We 
think, however, that the changes in value-based decision-making observed in the punishment 
task, as well as in the other tasks, cannot readily be attributed to increased locomotion. 
First, reaction times in the punishment task were longer after mesoaccumbens activation 
(Fig. S8b). Second, responding in the inactive hole in the punishment task was not changed 
(Fig. S8c). Third, the effects of mesoaccumbens activation in the reversal learning task were 
restricted to win-stay behavior after the first reversal. Last, mesoaccumbens activation did 
not affect the time for the animals to complete the reversal learning session (Fig. S3d).

Figure 5 Mesocortical and mesoaccumbens activation does not alter the static reward value of sucrose. 
(a) DREADD activation of either pathway did not affect the number of active lever presses for sucrose 
under a fixed-ratio 10 schedule of reinforcement (two-way repeated measures ANOVA; main effect of 
CNO, p = 0.0355; group × CNO interaction, p = 0.5001; post-hoc Sidak’s multiple comparisons test, CNO 
versus saline, all p > 0.1).  n = 9 for control, n = 8 for mesoaccumbens group, n = 9 for mesocortical 
group. (b) Both during a 10-minute extinction session (left panel) and a reinforced lever pressing 
session (under an FR5 schedule of reinforcement, right panel), devaluation of the reinforcer by selective 
satiation for sucrose lead to a decrease in responding (2-way repeated measures ANOVA, main effect of 
prefeeding in all four groups, p < 0.0001), without any effects of CNO (non-reinforced mesoaccumbens, 
CNO effect p = 0.7745, prefeeding × CNO interaction: p = 0.8448; non-reinforced, mesocortical, CNO 
effect p = 0.9516, prefeeding × CNO interaction: p = 0.5318; reinforced mesoaccumbens, CNO effect 
p = 0.1472, prefeeding × CNO interaction: p = 0.5287; reinforced mesocortical, CNO effect p = 0.4654, 
prefeeding × CNO interaction: p = 0.8877). n = 12 for mesoaccumbens, n = 11 for mesocortical group. (c) 
Under a progressive ratio schedule of reinforcement, mesoaccumbens activation significantly increased 
the number of lever presses made (two-way repeated measures ANOVA; main effect of CNO, p = 0.0006; 
group × CNO interaction, p = 0.0007; post-hoc Sidak’s multiple comparisons test, p = 0.8998 for controls; 
p = 0.8998 for control group; p < 0.0001 for mesoaccumbens group; p = 0.9947 for mesocortical group). 
n = 9 for control, n = 8 for mesoaccumbens group, n = 9 for mesocortical group. Data are shown as mean 
± standard error of the mean.

Figure 6 Mesoaccumbens, but not mesocortical activation attenuates the effect of punishment on 
responding for sucrose. (a) Task design. (b) After saline treatment, footshock punishment robustly 
diminished responding (Sidak’s multiple comparisons test, ‘0.3 mA saline’ versus ‘no punishment 
saline’, all p < 0.001). This effect was abolished by activation of the mesoaccumbens, but not the 
mesocortical, pathway (Sidak’s test, ‘0.3 mA CNO’ versus ‘no punishment saline’ in the mesoaccumbens 
group, p  = 0.9995; in mesocortical group, p = 0.0002; in control group, p < 0.0001). n = 9 control, n = 
9 mesoaccumbens group, n = 10 mesocortical group. (c) Footshock punishment evoked a decrease 
in DA neuron activity, measured using fiber photometry in TH::Cre rats (one-sample t-test, p = 0.0074, 
n = 9 rats). (d) No modulation of nociception by mesoaccumbens or mesocortical activation in the 
tail withdrawal test (2-way repeated measures ANOVA; main effect of CNO, p = 0.75;  group × CNO 
interaction, p = 0.99). n = 8 control, n = 9 mesoaccumbens group, n = 9 mesocortical group. Data are 
shown as mean ± standard error of the mean. **** p < 0.0001, *** p < 0.001
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RPE processing during mesoaccumbens hyperactivity
There are three possible explanations for the impaired negative RPE processing during 
mesoaccumbens hyperactivity: (1) hyperactivity of VTA DA neurons abolishes the trough 
in neuronal activity caused by negative reward prediction, (2) elevated DA levels lead to a 
baseline shift in RPE signalling, after which a decrease in DA release during negative reward 
prediction does not reach the lower threshold necessary to provide a learning signal in 
downstream regions, or (3) a combination of both. 
 To address the first explanation, we unilaterally injected animals with a mixture of 
the calcium fluorophore GCaMP6s and Gq-DREADD and tested animals for reversal learning 
(Fig. 7a and Fig. S9). This allowed us to measure RPE signals from VTA neurons within one 
animal during baseline conditions and during hyperactivation of these same neurons. CNO 
administration did not impair the ability of VTA DA neurons to signal RPEs during reversal 
learning (i.e. deviations from baseline during reward prediction), inconsistent with the first 
possible explanation. By extension, this also excluded the third explanation. However, the 
second explanation is consistent with our findings that chemogenetic stimulation of the 
mesoaccumbens pathway increases the extracellular concentration of dopamine and its 
main metabolites in the NAc (Fig. 2h). Together, these data support a scenario in which 
the inability to adjust behavior after loss or punishment during hyperactivation of the 
mesoaccumbens pathway is not due to an inability of VTA neurons to decrease their firing 
rate during negative reward prediction, but rather by impaired processing of this learning 
signal within the NAc as a result of increased baseline DA levels (Fig. 7b). This observation 
fits well with our earlier finding that the infusion of a DA antagonist into the NAc can prevent 
the effects of DREADD activation on reversal learning (Fig. 2j), a manipulation that restores 
the degree of NAc DA receptor activation.

Discussion
Here, we show that hyperactivity of the mesoaccumbens pathway reduces the ability of 
animals to use loss and punishment signals to change behavior by interfering with negative 
RPE processing. Using in vivo neuronal population recordings, we show that the VTA signals 
reward presentation as well as reward omission during VTA neuron hyperactivity, meaning 
that the behavioral impairments are not caused by blunted DA neuron activity during 
negative reward prediction, but rather by impaired processing in the NAc as a result of 
elevated baseline levels of DA. Therefore, we propose a model (Fig. 7b) in which hyperactive 
VTA neurons signal positive and negative RPEs to the NAc, but because baseline DA tone is 
increased, the signaling threshold in the NAc that allows for the incorporation of negative 
RPEs into adaptive behavior cannot be reached during reward omission or punishment. 
 The majority of neurons transfected with the DREADD virus had a DAergic 
phenotype, chemogenetic mesoaccumbens activation replicated the effects of cocaine 
and D-amphetamine on reversal learning, and this effect of chemogenetic mesoaccumbens 
activation was prevented by intra-NAc infusion of the DA receptor antagonist α-flupenthixol. 
Together, this supports the notion that the behavioral changes observed in the present 
study are the result of chemogenetic stimulation of VTA DA cells. However, a role for non-DA 
neurons cannot be excluded with the currently used techniques. Importantly, alongside the 
dense DA innervation, the VTA sends GABAergic, glutamatergic, as well as mixed DA/GABA 
or DA/glutamate projections to the NAc and mPFC16,42,43. The role that these projections play 
in behavior is only beginning to be investigated, but on the basis of what is presently known, 
we consider it unlikely that the non-DAergic innervation of the NAc and mPFC is involved in 
the behavioral changes observed here. For example, optogenetic stimulation of VTA GABA 
neurons has been shown to suppress reward consumption, something we did not observe 
in our experiments44. In addition, by inhibiting  NAc cholinergic interneurons, stimulation 
of VTA GABA projections to the NAc has been shown to enhance stimulus-outcome 
learning45. However, increased stimulus salience does not readily explain the deficits in 

Figure 7 RPE processing after mesoaccumbens stimulation. (a) Animals were co-injected with GCaMP6s 
and Gq-DREADD and tested for reversal learning after injection of saline or CNO. VTA neurons responded 
in a comparable way during reversal learning after saline and CNO treatment (repeated measures in n 
= 4 animals; ANOVA, CNO x time interaction effect, win trials, p = 0.39; lose trials, p = 0.38). See figure 
S9a for individual animals. Scale bar, 1mm. Data are shown as mean (solid line) ± standard error of the 
mean (shading). (b) Proposed mechanisms: (I) Hyperactivity of NAc-projecting VTA DA neurons leads 
to impaired coding of negative RPE troughs, (II) Hyperactivity shifts baseline NAc DA levels, thereby 
preventing the exceedance of a negative RPE threshold in the NAc and impairing the ability to learn from 
negative feedback, or (III) A combination of both.
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reversal learning, probabilistic discounting and punished responding for sucrose that we 
found in the present study. Last, stimulation of VTA-NAc glutamate neurons has been shown 
to produce aversive effects46, which in our experiments most likely would have increased, 
rather than decreased the ability to use negative feedback to alter behavior. Therefore, we 
think it is justified to state that the deficits in reversal learning, probabilistic discounting 
and punished reward taking evoked by chemogenetic mesoaccumbens stimulation is the 
result of increased DA signaling in the NAc. Reversal learning impairments have previously 
been reported after systemic or intra-NAc treatment with a DA D2 receptor agonist in rats 
and humans47-49, whereas probabilistic discounting seems to be dependent on DA D1 rather 
than D2 receptor stimulation in the NAc50. Together, this suggests that the behavioral effects 
of mesoaccumbens hyperactivity observed here rely on stimulation of both DA receptor 
subtypes, depending on the task structure. Interestingly, the punishment insensitivity we 
observed after mesoaccumbens stimulation appears inconsistent with previous studies 
showing that treatment with amphetamine and the DA D2 receptor agonist bromocriptine 
make animals more sensitive to probabilistic punishment in a risky decision-making task, in 
which animals can choose between a small and safe reward, and a large reward with a chance 
of punishment51,52. In this latter task, however, presentation of the punishment coincides 
with the presentation of the large reward, and it is unknown how DA neurons respond to 
such an ambivalent combination of events. Importantly, risky choice behavior was found to 
correlate positively with DA D1 receptor expression in the NAc shell52, suggesting that the 
influence of NAc DA on behavior in this task may not be unidirectional.
 In contrast to the mesoaccumbens projection, hyperactivity of the mesocortical 
pathway did not markedly affect value-based decision-making. It did increase the preference 
for large, risky rewards over small, but safe rewards in the probabilistic discounting task. 
However, when one of the two options yielded more sucrose reward, animals remained 
capable of choosing the most beneficial option, perhaps as a result of the differential roles 
that prefrontal D1 and D2 receptors play in this task53. That these animals maintained the 
capacity to make proper value-based decisions was also apparent in the reversal learning and 
punishment tasks. Thus, the patterns of effects of mesocortical stimulation is qualitatively 
different from the mesoaccumbens-activated phenotype, even though there is modest 
overlap, such as the increased lose-stay behavior in the probabilistic discounting task. 
Therefore, we do not think that the mesocortical phenotype is an attenuated version of the 
mesoaccumbens one, although the lower density of the mesocortical projection (Fig. S2a) 
may explain the relative paucity of behavioural changes after chemogenetic mesocortical 
stimulation. Notably, the mesocortical pathway has been shown to be vital for certain forms 
of cost-benefit judgement, especially those involving uncertainty or sudden changes in 
task strategy25. As a result, manipulations of prefrontal DA affect tasks like probabilistic 
discounting or set shifting, but not reversal learning25,54. 
 Our data emphasize the importance of balanced DA signaling in the NAc. It is 
reasonable to assume that brain DA concentrations are tuned to levels that are optimal to 
survival, and deviations from this optimum lead to the profound behavioral impairments 
seen in certain mental disorders. We think that our proposed model of mesoaccumbens 
overactivation can explain the decision-making deficits that are seen during states of 
increased DAergic tone, such as manic episodes, substance abuse, and DA replacement 
therapy in Parkinson’s disease. When one cannot devalue stimuli, actions or outcomes 
based on negative feedback, their value representation remains artificially elevated. 
Hence, outcome expectancies of choices will be unrealistically high, leading to behavior 
that is overconfident and overoptimistic. These inflated outcome expectancies have been 
demonstrated in human manic patients2, suggesting an inability to devalue goals towards 
realistic levels. That this disease state is associated with abolished negative RPE signaling 
in the NAc is substantiated by an fMRI study in patients experiencing acute mania55, in which 
activity in the NAc of manic patients remained high when monetary reward was omitted, 

while healthy controls showed a significant reduction in NAc activity, as expected based on 
RPE theory.
 Most drugs of abuse enhance DA transmission in the brain, either in a direct 
(e.g., DA reuptake inhibition) or indirect way (e.g., disinhibition of DA neurons)56,57. Direct 
dopaminomimetics, such as cocaine and D-amphetamine, are known to mimic the symptoms 
of mania, such as increased arousal, euphoria, and a reduced decision-making capacity10. 
Impaired learning from negative feedback may potentially contribute to the escalation of drug 
use, since users may be insensitive to the thought of forthcoming negative consequences 
during the ‘high’ of these drugs. Furthermore, DA replacement therapy, often prescribed 
to Parkinson’s disease patients, has been associated with the development of problem 
gambling, hypersexuality and excessive shopping behavior, a phenomenon known as the 
DA dysregulation syndrome58,59. More than a decade ago, it has already been hypothesized 
that these clinical features could be the result of impaired RPE learning due to ‘overdosing’ 
midbrain DA levels30,60. Here, we provide direct evidence to support this notion.  
 There is a wealth of evidence to implicate increased DA levels in harmful decision-
making behavior in mental disorders1,2,3. Thus far, however, it was unknown through 
which pathways and by which mechanisms these effects were mediated. Here, we used 
behavioral tasks in rats, combined with projection-specific chemogenetics to show that 
hyperactivation of the VTA leads to decision-making deficits by impairing negative feedback 
learning through overstimulation of NAc DA receptors. Altogether, we provide a mechanistic 
understanding of why decision-making goes awry during states of hyperdopaminergic tone, 
providing a possible explanation for the reckless behaviors seen during drug use, mania, and 
DA replacement therapy in Parkinson’s disease.

Methods
Animals
A total of 128 adult male Crl:WU Wistar rats (Charles River, Germany) were used for the 
behavioral experiments, weighing ~250 gram at the start of the experiments. Rats were 
housed in pairs in a humidity- and temperature-controlled environment under a 12h:12h 
reversed day-night cycle (lights off at 7am). Rats in the photometry, microdialysis and intra-
accumbens micro-infusion experiments were housed individually. Rats were food restricted 
(4g of normal chow per 100g body weight on test days, 5g per 100g body weight on remaining 
days) during the following experiments: reversal learning and probabilistic discounting. 
During the other behavioral tasks, animals had ad libitum access to standard chow (Special 
Diet Service, UK). Animals always had ad libitum access to water, except during behavioral 
tests. All experiments were approved by the Animal Ethics Committee of Utrecht University 
and conducted in agreement with Dutch laws (Wet op de Dierproeven, 1996) and European 
guidelines (Guideline 86/609/EEC).

Surgeries
Anaesthesia was induced with an i.m. injection of a mixture of 0.315 mg/kg fentanyl and 10 
mg/kg fluanisone (Hypnorm, Janssen Pharmaceutica, Beerse, Belgium). Animals were placed 
in a stereotaxic apparatus (David Kopf Instruments, Tujunga, USA) and a small incision was 
made along the midline of the skull. One μl of CAV2-Cre virus (2.3 × 1012 particles/ml) was 
bilaterally injected into the NAc (+1.20 mm AP, ±2.80 mm ML from Bregma and -7.50 mm DV 
from the skull, at an angle of 10°) or the mPFC (+2.70 mm AP, ±1.40 mm ML from Bregma 
and -4.90 mm DV from the skull, at an angle of 10°). The control group received a bilateral 
injection of 1 μl saline into the NAc. All animals received a bilateral injection of 1 μl AAV5-
hSyn-DIO-hM3Gq-mCherry (1 × 1012 particles/ml) into the VTA (-5.40 mm AP, ±2.20 mm ML 
from Bregma and -8.90 mm DV from the skull, at an angle of 10°). The viruses were infused 
at a rate of 0.2 μl/min. After injection, the needle was maintained at its injection position 
for 10 min to allow the virus to diffuse into the tissue. After surgery, the animals were given 
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carprofen for pain relief (5 mg/kg per day for 3 days, s.c.) and saline (10 ml once, s.c.). 
Animals were allowed to recover for 7 days before behavioral training continued. Behavioral 
testing started at least six weeks after surgery to allow for proper viral transfection.

Accumbens micro-infusions
For intra-accumbens micro-infusions, 7 animals were bilaterally implanted with 26-gauge 
stainless steel guide cannulas (Plastics One, Raonoke, USA), 1 mm above the NAc (same 
coordinates as for CAV2-Cre injection, see above), after injection of the viral vectors 
necessary for mesoaccumbens Gq-DREADD expression. Cannulas were secured to the skull 
by screws and dental cement. Injectors protruded 1 mm beyond the termination point of the 
guide cannulas.
Animals were habituated with saline infusions (0.5 μl/side) from 3 days before the experiment, 
15 minutes before reversal learning training sessions. On the two experimental days, animals 
received infusions with saline (0.5 μl/side) or cis-(Z)-α-flupenthixol dihydrochloride (Sigma-
Aldrich, Zwijndrecht, The Netherlands) dissolved in saline (10 μg dissolved in 0.5 μl/side), 
together with an i.p. injection of saline or CNO, 15 minutes prior to reversal learning. The 
infusion rate was set to 1 μl/min, and the injectors were left in place for an additional 30 
seconds after the infusion was complete to allow for the diffusion of saline/flupenthixol 
into the brain. Between the time of infusion and testing, animals were placed back into their 
home cage.

Behavioral procedures
Animals were trained 5-7 days per week. All behavioral experiments took place between 
9am and 6pm. Behavioral tests a-e (see below) were conducted in operant conditioning 
chambers (30.5×24.2×21.0 cm; Med Associates Inc., USA), placed within sound-attenuated 
cubicles. Experiments a, c and d were conducted in boxes that were equipped with a sucrose 
receptacle flanked by two retractable levers and cue lights. The wall on the other side of the 
box contained a house light and tone cue generator. Experiments b and e were conducted 
in different boxes that contained two illuminated nose pokes, a house light and a tone cue 
generator on one side of the box, and a sucrose receptacle flanked by two cue lights on the 
other side of the box. Sucrose pellets used were 45mg each (SP; 5TUL, TestDiet, USA).

Chemogenetic experiments were conducted in five independent cohorts of animals:
Cohort 1: Responding for sucrose: fixed ratio (FR) 5 schedule of reinforcement with prefeeding 
devaluation (with levers) [Fig. 5b], progressive ratio (PR) schedule of reinforcement (with 
levers) [Fig. 5c], open field [Fig. S8a]
Cohort 2: Responding for sucrose: FR 10 schedule of reinforcement (with levers) [Fig. 5a], 
elevated plus maze [Fig. S7]
Cohort 3: Probabilistic discounting (with levers) [Fig. 4], reversal learning (with nose pokes) 
[Fig. 2], punishment task (with nose pokes) [Fig. 6]
Cohort 4: Probabilistic discounting (with levers) [Fig. 4], reversal learning (with nose pokes) 
[Fig. 2], elevated plus maze [Fig. S7], tail withdrawal test [Fig. 6d]
Cohort 5: Probabilistic discounting (with levers) [Fig. 4f,g], reversal learning (with nose 
pokes) [Fig. 2i,j

CNO (0.3 mg/kg dissolved in 0.3 mg/ml saline) or saline was injected i.p., 20-30 minutes 
before the start of every experiment. Unless otherwise indicated, animals were treated with 
CNO and saline counterbalanced between days. In between treatment days, a wash-out 
period of at least 48 hours was used, during which behavioral training was continued.

a. Fixed ratio and progressive ratio schedule of reinforcement
Operant sessions under a fixed ratio (FR) schedule of reinforcement lasted for 1 hour, during 

which the house light was illuminated to signal response-contingent reward availability. 
Animals were first trained under an FR1 schedule of reinforcement, during which pressing 
the active lever resulted in the delivery of one sucrose pellet, the illumination of the cue 
light above the active lever for 5 s and retraction of both levers. After a 10-s time-out period 
(during which the house light was turned off), the levers were reintroduced and the house 
light was turned on, signaling the start of a new trial. Pressing the inactive lever was without 
scheduled consequences. After acquisition of sucrose self-administration under an FR 1 
schedule, the response requirement was increased to FR5 (see below, experiment c), or 
FR10. 
Under the progressive ratio (PR) schedule of reinforcement, the response requirement on 
the active lever was progressively increased after each obtained reward (1, 2, 4, 6, 9, 12, 15, 
20, 25, etc., see ref. 61). A PR session ended after the animal failed to obtain a reward within 
30 min. The animals were trained under FR and PR schedules before surgery. After surgery, 
they were retrained until we observed stable responding for at least 3 consecutive days at 
group level.

b. Reversal learning
Animals were trained to nose poke for sucrose under an FR1 schedule, in which responding 
in either of the two illuminated nose pokes resulted in the delivery of one sucrose pellet. 
During the reversal learning test, the nose poke holes were illuminated and responding into 
one of two holes (the site of the active hole was counterbalanced between animals) always 
resulted in reward delivery, a 0.5s auditory tone, and switching off the nose poke lights. 
Responding into the inactive hole always resulted in an 8s time-out period during which the 
house light and nose poke lights were turned off. A new trial began 8s after the last response, 
which was signaled to the animal by illumination of the nose poke lights. When the animal 
made 5 correct consecutive responses in the active hole, the contingencies were reversed 
so that the previously inactive hole became the active one, and the previously active hole 
became the inactive one. The session ended when the animal completed 150 trials.
Animals had no prior experience with contingency switches before the reversal learning 
experiments. In between treatment days, animals were retrained on an FR1 schedule of 
reinforcement, in which responding of any of the two nosepoke holes resulted in reward 
delivery. Before the intra-accumbens micro-infusions reversal learning experiments (Fig. 2i,j), 
animals received 8 reversal learning training sessions, to gain experience with contingency 
changes. This was done to minimize the chance on a between-days effect on performance, 
i.e. a difference in performance between the first and last testing day not caused by the 
manipulation.
Win-stay behavior was calculated as the percentage of rewarded trials on the active nose 
poke hole followed by a response on that same nose poke hole in the subsequent trial. Lose-
stay behavior was calculated as the percentage of non-rewarded trials on the inactive nose 
poke hole after which the animal responded in that same nose poke hole in the subsequent 
trial. Trials to criterion was defined as the total number of trials necessary to reach the first 
reversal (i.e., 5 consecutive responses at the active nosepoke hole). Perseverative responding 
was defined as the total number of consecutive responses at the inactive nosepoke hole 
directly a reversal. For example, if after a reversal the animal chooses inactive-inactive-
active, the # of perseverative responses after that reversal is 2.

c. Prefeeding devaluation
One hour before operant testing, animals were individually housed in standard cages where 
they had ad libitum access to water and standard chow (non-devalued situations) or sucrose 
pellets (devalued situation). The devaluation test comprised 10 minutes of non-reinforced 
lever pressing, during which pressing on either of the two levers was without scheduled 
consequences. This test was immediately followed by a regular session under an FR5 
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schedule of reinforcement. The animals were tested 4 times (devalued/non-devalued, CNO/
saline), according to a within-subjects counterbalanced design. Each test day was followed 
by at least 2 days of regular FR5 training.

d. Probabilistic discounting task
This task was modified from refs. 33 and 34. Animals were allowed to respond on a safe 
lever, which always yielded one sucrose pellet, and a risky lever, which yielded three sucrose 
pellets with a given probability. The task comprised four blocks, each consisting of 6 forced 
trials on the risky lever (in which only the risky lever was presented), followed by 10 free 
choice trials (in which both the safe and the risky lever were presented). The chance of 
receiving a large reward at the risky lever decreased across the four trial blocks: 100%, 33%, 
16.67% and 8.33% in blocks 1, 2, 3 and 4, respectively. Choosing the safe lever resulted in 
reward delivery (one pellet), a 0.5s audio tone and illumination of the cue light above the 
safe lever for 17s. Hereafter, an intertrial interval of 3s started, in which house- and cue 
light were turned off. A rewarded response on the risky lever started the same sequence of 
cues, except that three sucrose pellets were delivered, with an interval of 200 ms. A non-
rewarded response on the risky lever resulted in a 20s time-out in which all lights in the 
operant chamber were turned off. A new trial was signaled by illumination of the house light 
and reintroduction of the levers. A switch of blocks was signaled to the animal by switching 
the houselight, cuelights and tone on and off within 2s (1s ON, 1s OFF), three times in a row. 
This was immediately followed by the start of the forced trials sequence.
Before training on the probabilistic discounting task, animals were trained to respond on 
both levers, in which one lever (the future safe lever) always yielded one sucrose pellet, 
and the other lever (the future risky lever) always three sucrose pellets. There were 3 trial 
types, each with a 33.3% probability: one in which only the single-pellet lever presented, 
one in which only the three-pellet lever was presented, and one in which both levers were 
presented so the rats could choose between either lever. Hereafter, animals were trained on 
the probabilistic discounting task until stable task performance was observed (no significant 
effect of training day in a repeated-measured ANOVA over 3 days).
Win-stay behavior was calculated as the percentage of rewarded trials on the risky lever 
followed by a response on the risky lever in the subsequent trial. Lose-stay behavior was 
calculated as the percentage of non-rewarded trials on the risky lever after which the animal 
responded on the risky lever in the subsequent trial. Performance was calculated as the % 
optimal choices in block 1, 3 and 4, thus % choice for the risky lever in block 1, and % choice 
for safe lever in blocks 3 and 4.
The discounting rate was calculated as follows:

discounting rate (% per block) = 

p +p
2

-p

3

block 3 block 4
block 1                       (1)

With p being the percentage choice for the risky lever in the subscripted block. pblock2 was 
left out of the equation because there is no economically best choice in the second block.

e. Punishment task
Animals were placed into the operant chamber and the session started with illumination of 
the house light and two nosepoke lights. Responding into the active nose poke hole resulted 
in the immediate delivery of one sucrose pellet, a 0.3s tone cue, and illumination of the cue 
lights on the other side of the operant chamber, next to the sucrose receptacle. House light 
and nose poke lights were turned off. Five seconds after the termination of the tone cue, a 
second 0.3s tone cue was played, which co-terminated with the chance of a 0.3 s, 0.3 mA 
foot shock. The chance of a foot shock increased across four trial blocks: trials 1-10, no 

punishment; trials 11-20, 1 in 3 trials punished; trials 21-30, 2 in 3 trials punished; trials 31 and 
up were always punished. Cue lights were turned off after the tone-foot shock combination 
terminated, leaving the animals in the dark during the 5s-inter-trial interval. Responding into 
the inactive hole was registered, but was without scheduled consequences. The session 
ended when no response into the active hole had been made for 5 min. Before animals were 
tested on the punishment task, animals were trained to nosepoke for sucrose under an FR1 
schedule of reinforcement (i.e. the same task, but without foot shock punishment). Between 
the two testing sessions, animals were retrained to respond on FR1 (without punishment) 
for 2 days.

f. Tail withdrawal test
This test was modified from ref. 62. The animals were gently fixated in a towel and 3-5 cm of 
the tip of their tail was put in a beaker with water of 50 ± 1 °C. The latency until tail withdrawal 
was analyzed from a recorded video in a frame-by-frame manner. Animals were tested twice 
after CNO treatment, and twice after saline treatment (saline and CNO counterbalanced 
between days, with 48 hours in between). The latencies of the two respective tests were 
averaged. When the animal did not withdraw its tail within 20s, the animal was placed back 
into its home cage (this happened once in one animal).

g. Elevated plus maze
The elevated plus maze was made out of grey plexiglas, and consisted of two open arms 
(50×10 cm) and two closed arms (50×10×40 cm), connected by a center platform (10×10 
cm). The maze was elevated 60 cm above the floor. Behavior was scored using Ethovision 
3.0 (Noldus, Wageningen, The Netherlands). The total times spent in the closed arms, open 
arms, and on the central platform were analyzed. All animals received CNO and were tested 
once for 5 min to preserve novelty.

h. Open field test
The open field was 100×100 cm and made out of dark plexiglas. During the 5-minute test, 
the open field was illuminated with white light, and a white noise sound source (85 dB) was 
used to prevent distraction from ambient noise. Locomotor activity was measured using 
video tracking software (Ethovision 3.0, Noldus, Wageningen, The Netherlands). All animals 
received CNO and were tested once.

Computational model
To model the behavior of the animals in the reversal learning task, we fit the data to an 
extended Q-learning model. In this model, animal behavior is captured in three parameters: 
- ɑwin: learning from positive RPE (win trials)
- ɑloss: learning from negative RPE (lose trials)
- β: the extent to which choice behavior is driven by value
This model was chosen because it has a direct relation to midbrain dopamine by including 
reward prediction error factors in the equations.

On each trial, the value of left (Qleft) or right (Qright) nose poke was updated, depending of 
which of those was chosen, according to the equation:

Q
Q RPE

Q RPE

 

 
for win trials 
for lose trialss t

s t win t

s t loss t
,

, 1 1

, 1 1
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in which Qs,t is the value of the outcome of responding into nose poke s on trial t. Note that 
nose poke outcome values ranged from 0 to 1.

Nose poke outcome value at session start, Qleft,t=1 and Qright,t=1,were set at 0.

Nose poke outcome values were converted to action probabilities using a softmax:
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in which ps,t is the chance of choosing nose poke s in trial t.

Best-fit model parameters were determined per animal, per session by minimizing the 
model’s negative log likelihood using MATLAB’s ‘fmincon’ function. Each session’s 
maximum likelihood was compared to a random choice model, in which every option had a 
0.5 probability of being chosen, thus having had a log likelihood of 150 trials*log(0.5). The 
fit of the Rescorla Wagner model was compared with this random choice model, both on 
an individual level (Fig. S1b, S3c), and on a group level (Table S1), using a likelihood ratio 
test with the p threshold set at a liberal p = 0.1. This type of comparison is used, since the 
Rescorla Wagner model nests the chance model (chance model is a special case in the 
Rescorla Wagner model in which β = 0). Although some sessions were not well explained 
by the Rescorla Wagner model (i.e. animals chose randomly or used an alternative strategy; 
red dots in Fig. S1b, S3c), we decided to include all sessions in our between-treatment 
comparison to avoid a bias. Including only those animals in which all sessions were 
significantly better explained by the Rescorla Wagner model than by chance, resulted in the 
same effect (i.e. a decrease in ɑloss), but with higher statistical significance.

The best-fit parameters for each condition (saline, cocaine, D-amphetamine) were compared 
within-animals, using a Wilcoxon matched-pairs signed rank test.

In vivo fiber photometry
Setup
A blue LED light (M490F2, Thorlabs, Germany) was coupled to a 400 µm core fiber optic 
patch cable (M76L01, Thorlabs) and connected to a fiber mount (F240FC-A, Thorlabs). It 
was then passed through an excitation filter (FF02-472/30-25, Semrock), reflected by a 
dichroic mirror (FF495/605-Di01-25x36, Semrock), and focused onto a 400 µm core (Made 
from BFH48-400, Thorlabs, CF440, Thorlabs) patch cable towards the animal. For in vivo 
experiments, this patch cable was connected to a 400 µm implantable fiber (BFH48-400, 
Thorlabs) using a 2.5 mm ceramic ferrule (CF440, Thorlabs). Returning green light passed 
through the same patch cable onto the fiber mount. It then passed through the dichroic 
mirror and was deflected by a second dichroic mirror (Di02-R594-25x36, Semrock, USA) and 
through an emission filter (FF01-535/50-25, Semrock). The light was then focused onto a 
silicon based photoreceiver (#2151 Photoreceiver, Newport corporation, USA) using a plano-
concex lens (#62-561, Edmund Optics, USA).

After photo-electron conversion, the electrical signal was pre-amplified on the photodiode 
(2×1010 V/A or 2×1011 V/A) and then passed on to a lock-in amplifier (SR810, Stanford 
Research Systems). The lock-in amplifier was set to an AC grounded single input. It was then 
lock-in amplified in the range of 233-400 Hz, a 12 dB/oct bandwidth roll off and a 30 or 100 
ms time constant for the subsequent low-pass filtering. Sensitivity settings of the detection 
ranged from 1 mV to 500 mV, with normal dynamic reserve and no additional notch filters 
applied. The lock in amplifier was set to the max offset (+109.21), and the phase was set to 
the hardware auto-adjusted value (typically in the range of 11-22 degree). The reference lock-
in signal was translated by the hardware into TTL and coupled at 5V to the LED controller 
(LEDD1B, Thorlabs) that controlled the blue LED. The lock in amplified signal was then run 
onto an digitizer (Digidata 1550a Digitizer, Molecular Devices) and captured at 100 Hz – 10 
kHz, typically using a  50Hz low pass filter. Additional TTL signals from behavioral events 
were simultaneously processed by the digitizer.

To correct for bleaching, raw data points Fx were converted to dF/F by running-average 
normalization:          
                       

dF F
F F
F

( / )x
x 0

0

=
−

                      (5)

Here, F0 is the baseline, which is calculated as the average of the 50% middle values in the 
30 seconds following every time point Fx.

Experiment
The same surgical protocol as described above was used. Nine male TH::Cre rats (weighing 
300-350 gram during surgery) were used, and 1 μl of AAV5-FLEX-hSyn-GCaMP6s or AAV5-
hSyn-eYFP (University of Pennsylvania Vector Core) was injected at a titer of 1012 particles/
ml unilaterally into the right VTA. A 400-µm implantable fiber was lowered to 0.1 mm above 
the injection site and attached with dental cement. Animals were tested in the reversal 
learning task described above, with the difference that retractable levers were used rather 
than nosepokes. This was done to prevent the dopamine transients to be influenced by 
perseverative responses into the nose poke during the inter-trial interval. Here, the levers 
remained retracted during the entire inter-trial interval, so that no responses could be made 
until the start of the next trial. In addition, no cue lights were used and the houselight was 
turned on continuously to prevent light contamination by the environment. Moreover, the 
correct responses in a row needed to obtain a reversal was set to 8 rather than 5, to increase 
the number of trials before the first reversal. Peri-stimulus time histograms were time-
locked to the lever press (i.e., the moment of choice). In addition, 4 animals were injected 
with a 1-μl mixture of AAV5-FLEX-hSyn-GCaMP6s and AAV5-hSyn-DIO-hM3Gq-mCherry 
(both 1012 particles/ml, unilaterally in the right VTA). The AAV carrying Gq-DREADD was 
injected unilaterally in order not to interfere with task performance. Animals were tested in 
a counterbalanced fashion, so that half of the animals was first tested with saline, and the 
other half with CNO. In all animals expressing GCaMP6s, we tested whether a modest (0.30 
mA) 2-second foot shock punishment evoked a negative RPE signal in VTA DA neurons. This 
was repeated 12 times in one session (with an inter-shock-interval of 40s). 

Microdialysis
For microdialysis experiments, 9 animals were unilaterally implanted with guide cannulas 
(AgnTho’s, Lidingö, Sweden), 1.5 mm above the right NAc (same coordinates as for CAV2-
Cre injection, see above), 4 of which also received an injection of the viral vectors necessary 
for unilateral mesoaccumbens Gq-DREADD expression. After 4-6 weeks, a microdialysis 
probe (PES membrane protruding 2 mm beyond the cannula, cut-off 15 kD; AgnTho’s, 
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Lidingö, Sweden) was placed into the guide cannula and secured. The following day, the 
microdialysis experiment commenced, by dialysing Ringer’s solution through the probe at 
a rate of 1 µl/min. Each sample contained 15 µl of perfusate (i.e. 15 minutes), which was 
collected in 5 µl anti-oxidant solution containing 0.02 N HCOOH and 0.1% cysteine HCl in 
milli-Q. Saline, followed by CNO (1 mg/kg) was injected i.p., during dialysis.
Samples were analyzed by high performance liquid chromatography (HPLC) on an Alexis 
100 2D system (ANTEC Leyden, Zoeterwoude, The Netherlands), at a flow rate of 0.035 ml/
min. The mobile phase consisted a solution of 2.4 mM octanesulphonic acid, 1 mM KCl, 
100 mM phosphoric acid and 15% methanol in milliQ. Chromatograms were analyzed using 
Clarity software (DataApex, Prague, Czech Republic).

Immunohistochemistry
Animals were euthanized by an i.p. injection of sodium pentobarbital and perfused with 
phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA) in PBS. The 
brains were dissected and postfixed in 4% PFA in PBS for 24 hours and then stored in a 
30% sucrose in PBS solution. Brain slices (40 μm) were incubated overnight in a primary 
antibody solution, containing PBS with 0.3% Triton-X, 3% goat serum, and primary antibodies 
(1:1,000) against dsRed (rabbit, Clontech 632496) and TH (mouse, Millipore MAB318). The 
next day, brain slices were transferred to a secondary antibody solution containing PBS with 
0.1% Triton-X, 3% goat serum, and secondary goat antibodies (1:1,000) against mouse (488 
nm, Abcam ab150113) and rabbit (568 nm, Abcam ab175471). After an incubation period 
of 2hr at room temperature, slices were washed with PBS and mounted to glass slides. 
Histological verification was performed by a researcher unaware of the outcome of the 
behavioral experiment.

Exclusion criteria
Only animals that showed bilateral expression of hM3Gq-mCherry in the VTA were included 
in analyses. To exclude non-learners, animals in the probabilistic discounting task that 
showed a discounting rate of less than 10% per block at the end of training were excluded 
from the analysis.
Outlier analyses were performed on all data using the ROUT method (Q threshold set at 
1.0%). Two rats were identified as outliers and removed from their respective datasets: one 
rat from the mesocortical group in the elevated plus maze experiment (outlier in time spent 
in closed arm), and one rat from the in vivo fiber photometry experiment on the basis of foot 
shock data (outlier in DA response to foot shock).

Data availability
The datasets generated during the current study are available from the corresponding author 
on reasonable request.

Code availability
Custom-written MATLAB and MedPC scripts are available upon request. 

Data analysis and statistics
Data analysis and computational modelling was performed with MATLAB version R2014a 
(The MathWorks Inc.), statistical analyses with GraphPad Prism version 6.0 (GraphPad 
Software Inc.). 
Statistical comparisons were made using a t-test for a single comparison, and a (repeated 
measures) ANOVA was used for multiple comparisons, followed by a t-test with Šidák’s 
multiple comparisons correction. Paired, non-normally distributed data was compared 
using a Wilcoxon matched-pairs signed rank test with a Bonferroni correction for multiple 
comparisons. Welch’s correction was used once, in a case where variances in the t-test were 

unequal. 
Bar graphs represent the mean ± standard error of the mean, unless stated otherwise. In all 
figures: ns not significant, # p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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SUPPLEMENTARY FIGURE 1

(a) Additional measures of the reversal learning task
(left panel) Plot of the cumulative reversals over time for all animals after systemic drug injection, 
confirming that the drug-induced performance impairment does not develop until after the first 
reversal (dashed line). Sidak’s multiple comparisons test: p < 0.05 after trial 58 for D-amphetamine, p 
< 0.05 after trial 62 for cocaine. 
(right panels) 
Trials rewarded: one-way repeated measures ANOVA, F(1.670, 40.08) = 3.998, p = 0.0327. Post-hoc 
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SUPPLEMENTARY FIGURE 2

(a) (left) Spread of expression of Gq-mCherry in the midbrain. Shown is -5.40 mm posterior to Bregma. 
Atlas image adapted from Supplementary reference 1. 
(right) Quantification of number of Gq-mCherry transfected neurons per group. Each dot represents a 
single animal. Significantly fewer neurons were transfected in the mesocortical group compared to the 
mesoaccumbens group (unpaired t-test, t(14) = 6.713, p < 0.0001).
(b) Quantification of expression of Gq-mCherry in the midbrain. In mesoaccumbens animals, virus 
sometimes spread to the medialmost part of the substantia nigra (SN), although this was always less 
than 5% of total transfected neurons.
(c) Example histology image of an animal from the mesoaccumbens group, showing strong expression 
of Gq-mCherry in the VTA and modest expression in the medial SN.

Sidak’s test: cocaine vs saline, t(24) = 2.358, p = 0.0530; D-amphetamine vs saline, t(25) = 1.561, p = 
0.2461.
Time to complete session: one-way repeated measures ANOVA, F(1.930, 46.33) = 3.454, p = 0.0415. 
Post-hoc Sidak’s test: cocaine vs saline, t(24) = 2.388, p = 0.0497; D-amphetamine vs saline, t(25) = 
0.2042, p = 0.9744.
Data shows mean ± standard error of the mean.
(b) Likelihood of model fits. Every dot represents an individual session. Cocaine and D-amphetamine 
did not significantly affect the fit of the model to the data (one-way repeated measures ANOVA, F(2, 
48) = 1.783, p = 0.1791).  
(c) Heatplot of simulated data showing how win- and lose-stay behavior (taken over the entire 
session) vary as a function of learning rates ɑwin and ɑloss. Data shown are the average of 100 
simulations of each ɑwin/ɑloss combination, with choice stochasticity factor β fixed at its mean for 
visualization purposes (β  = 6.7). Dashed black lines show the average estimated learning rates after 
saline injection. The win-stay parameter is relatively stable for high learning rates compared to lose-
stay, while lose-stay is more stable for lower learning rates. Hence, a decline of the average negative 
learning rate ɑloss by ~2/3 more strongly affects win-stay than lose-stay behavior, providing an 
explanation for the observation that cocaine and D-amphetamine affect win-stay, but not lose-stay 
behavior. In contrast, when baseline learning rates would have been high, a decrease in ɑloss would 
have resulted in an increase in lose-stay, without affecting win-stay behavior. Thus, how learning 
rates affect win- and lose-stay behavior is dynamic, and this strongly depends on the baseline 
estimates of ɑwin, ɑloss and β.

(continuation of previous page)
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SUPPLEMENTARY FIGURE 3

(a) No effect of CNO treatment on the cumulative reversals over time for the control group and 
the mesocortical group (two-way repeated measures ANOVA for control group: main effect of 
CNO, F(1, 16) = 2.919, p = 0.1068; trials × CNO interaction, F(149, 2384) = 0.7633, p = 0.9838; 
two-way repeated measures ANOVA for data mesocortical group: main effect of CNO, F(1, 15) = 
0.2858, p = 0.6007; trials × CNO interaction, F(148, 2220) = 0.5058, p > 0.9999).
(b) Lose-stay behavior during reversal learning is not affected by DREADD stimulation of either 
pathway. 
Left: two-way repeated measures ANOVA; main effect of CNO, F(1, 40) = 0.1325, p = 0.7178; group 
× CNO interaction, F(2, 40) = 2.136, p = 0.1314.
Right: two-way repeated measures ANOVA; main effect of CNO, F(1, 50) = 1.392, p = 0.2436; group 
× CNO interaction, F(2, 50) = 0.045, p = 0.9556.

(c) (left panel) Model fit on the reversal learning data of the mesoaccumbens group. DREADD 
activation altered αloss in the same direction as cocaine and D-amphetamine, although not 
significantly so (one-tailed Wilcoxin matched-pairs signed rank test, W = -41.00, p = 0.1764). 
(right panel) Mesoaccumbens activation resulted in a significantly poorer fit of the model to 
the data (paired t-test, t(16) = 3.224, p = 0.0053). This seems consistent with the observation 
that during mesoaccumbens hyperactivity, both win-stay (Fig. 2e) and lose-stay behavior 
(Supplementary Figure 3b) are around chance level (50%), making the Rescorla-Wagner model a 
suboptimal descriptor of the animals’ behavior. 
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SUPPLEMENTARY FIGURE 4

In vivo microdialysis performed in the NAc showed increased baseline levels of DA and its 
metabolites after activation of the mesoaccumbens pathway by CNO (n = 4 animals DREADD group, 
n = 5 animals control group)
Two-way repeated measures ANOVA, with factors treatment and timepoints:
DA:
 Main effect of treatment: F(1,7) = 11.83, p = 0.0108
 Treatment × Time interaction effect: F(9,63) = 4.11, p = 0.0003
DOPAC:
 Main effect of treatment: F(1,7) = 9.77, p = 0.0167
 Treatment × Time interaction effect: F(9,63) = 15.69, p < 0.0001
HVA:
 Main effect of treatment: F(1,7) = 9.01, p = 0.0199
 Treatment × Time interaction effect: F(9,63) = 23.65, p < 0.0001
Post-hoc LSD tests: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Note a possible type I error 
at time point 3 in the DA graph.

SUPPLEMENTARY FIGURE 5

Fiber photometry
(a) Photometry responses during reversal learning in animals injected with the control fluorophore 
AAV-hSyn-eYFP (mean ± standard error of the mean).
(b) Fiber placement of animals used in photometry recordings. Atlas image adapted from Paxinos & 
Watson.
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SUPPLEMENTARY FIGURE 6

Probabilistic discounting task.
(a) In the probabilistic discounting task with decreasing probabilities across trial blocks, 
responding on the risky lever is economically beneficial in the first block, responding on the safe 
lever is beneficial in the last two blocks. In the second block, the yield of both levers is equal. The 
opposite is true for the version of the task with increasing probabilities across trial blocks.
(b) Depending on a priori knowledge, in the first block of the probabilistic discounting task, de- and 
revaluative mechanisms are needed to determine the reward value of the safe and risky levers. 
Assuming that a proper neuronal representation of lever value has been established at the end of the 
first block, subsequent blocks in the probabilistic discounting task with decreasing probabilities (left 
column) involve devaluative mechanisms, whereas the probabilistic discounting task with increasing 
probabilities (right column) involve revaluative mechanisms.
(c) Safe-stay behavior, defined as the percentage of safe choice trials followed by another safe 
choice, was unaffected by CNO treatment (two-way repeated measures ANOVA, main effect of 
CNO, F(1, 34) = 1.050, p = 0.3127; group × CNO interaction, F(2, 34) = 1.365, p = 0.2690).
(d) Percentage choice of the risky lever in the probabilistic discounting task with increasing 
probabilities during mesoaccumbens stimulation. Only in the first 5 trials of block 1, 
mesoaccumbens activation increased the choice for the risky lever, despite the low chance on 
reward (Fisher’s LSD test in block 1: t = 2.652, p = 0.0096. In all other blocks: p > 0.2).
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SUPPLEMENTARY FIGURE 7

Elevated plus maze

(a) Example track of a control animal in the elevated plus maze. Red line indicates 
the track of the animal’s center point. Scalebar, 25 cm.
(b) Total time spent in the closed arms of the elevated plus maze. Stimulation of 
the mesocortical pathway showed a trend towards increased anxiety, whereas 
stimulation of the mesoaccumbens pathway had no effect on behavior (unpaired 
t-test with Welch’s correction for unequal variance, Bonferonni corrected for 2 
comparisons; F(26.22)uncorrected = 1.943, p = 0.1256 for mesoaccumbens versus 
control, F(21.25)uncorrected = 2.378, #p = 0.053 for mesocortical versus control). n = 16 
control, n = 15 mesoaccumbens, n = 17 mesocortical.

SUPPLEMENTARY FIGURE 8
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(legend on next page)
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SUPPLEMENTARY FIGURE 9

Photometry recordings of VTA DA neurons during DREADD activation.

(a) Data from individual animals from figure 7a.
(b) To correct for bleaching, raw calcium signal was converted to dF/F0 values by normalizing to a 
running-average baseline.
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(a) Mesoaccumbens stimulation increases locomotion (Sidak’s multiple comparisons test, 
mesoaccumbens versus control, t(44) = 4.383, p = 0.0001; mesocortical versus control, t(44) = 
0.1096, p = 0.9925). All animals received CNO.
(b) Reaction times in the punishment task (based on trials 11-30). Receiving a foot shock during a 
trial robustly increased the reaction time during the subsequent trial in all three groups (two-way 
repeated measures ANOVA; main effect of shock, all groups p < 0.01). In addition, a significant 
main effect of CNO (F(1,9) = 20.97, p = 0.0013) and a significant shock × CNO interaction (F(1,9) 
= 8.271, p = 0.0183) were observed in the mesoaccumbens group. Post-hoc Sidak’s multiple 
comparisons test revealed a significant slowing of responding after mesoaccumbens activation 
after a no-shock trial (t(9) = 4.532, p = 0.0028), as well as after a shock trial (t(9) = 8.599, p < 
0.0001).
(c) Mesocortical or mesoaccumbens activation did not affect inactive nose poking in the 
punishment task (2-way repeated measures ANOVA; main effect of CNO, F(1,25) < 0.0001, p = 
0.9946;  group × CNO interaction, F(2, 25) = 0.3164, p = 0.7316).
(d) Time animals needed to complete the 150 trials of the reversal learning session was 
unaffected by CNO treatment (two-way repeated measures ANOVA; main effect of CNO, F(1, 47) = 
0.0439, p = 0.8350; group × CNO interaction, F(2, 47) = 0.2961, p = 0.7451).

(continuation of previous page)
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SUPPLEMENTARY TABLE 1

Model fits, performed on baseline behavior (i.e., after saline treatment) in the reversal learning task in the 
n = 25 rats from figure 1. Model 1 (‘M1’) is the classical Rescorla-Wagner model, whereas model 2 (‘M2’) 
uses separate learning rates for reward (ɑwin) and punishment (ɑloss) learning. Since the tested models are 
nested (M1 is a special case of M2), model comparison was performed using the likelihood-ratio test. M0 
is the baseline model, in which choice behavior is random (p = 0.5 for every trial).

SUPPLEMENTARY TABLE 2

Best-fit model parameters, estimated by maximizing the log likelihood for the model given the choice 
sequences in every session. Wilcoxon matched-pairs signed rank test with Bonferroni correction, ɑloss: 
cocaine versus saline, p = 0.0046; D-amphetamine versus saline, p = 0.032.

CH
APTER 2   DECISIO

N
 M

AKIN
G

 DU
RIN

G
 H

YPERDO
PAM

IN
ERG

IC STATES

Parameter estimates (mean ± SEM)

Model # of free 
parameters ɑwin ɑloss β

aggregate 
LL

significance 
model 

improvement

M0 0 -2599

M1 2 0.26 ± 0.05 2.0 ± 0.8 -2434
M1 > M0 

𝝌𝝌2(2) = 331.2 
p = 0

M2 3 0.23 ± 0.06 0.31 ± 0.06 6.7 ± 1.7 -2421
M2 > M1 

𝝌𝝌2(1) = 24.9 
p = 6.1 ✕ 10-7

Constraints [0 1] [0 1] [0 20]

Parameter estimates

ɑwin ɑloss β

Learning from 
positive RPE

Learning from 
negative RPE

Choice 
stochasticity

Saline 0.23 ± 0.06 0.31 ± 0.06 6.7 ± 1.7

Cocaine 0.30 ± 0.07 0.13 ± 0.05 ** 5.2 ± 1.4

D-amphetamine 0.26 ± 0.08 0.11 ± 0.02 * 8.8 ± 1.8
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Value-based learning is a fundamental cognitive process that enables an 
organism to flexibly adapt to a changeable environment. To study how the 
rodent prefrontal cortex (PFC) contributes to this process, we assessed 
the effects of pharmacological inactivation of four PFC subregions on 
performance in a probabilistic reversal learning task in rats. Computational 
trial-by-trial analysis of the behavioral data revealed robust, whole-PFC 
coding of negative feedback learning. In contrast, positive feedback learning 
depended on function of the prelimbic and lateral orbital PFC, whereas 
response persistence required functional activity within the infralimbic 
and medial orbital PFC. As a result, pharmacological inactivation of any 
of the four subregions impaired reversal learning performance, either by 
reducing the number of reversals achieved (infralimbic, lateral orbital PFC) 
or rewards obtained (prelimbic and medial orbital PFC). In sum, our data 
show that distinct components of value-based learning are generated in 
medial and orbital PFC regions, displaying functional specialization and 
overlap. This organization suggests an intricate balance between efficiency 
and safeguarding of function within the rodent PFC.

To be able to survive and thrive in a dynamic environment, organisms must learn to repeat 
actions that were profitable in the past, while withholding actions that were not. For 
example, when a certain action leads to food reward, a hungry animal is likely to repeat that 
action. Conversely, when an action does not result in reward, or when it results in explicit 
punishment, an animal is likely to avoid that action in the future. This integration of action-
outcome relationships is the basis of reinforcement learning theory1-3, which states that 
value is attributed to preceding actions, updated based on their outcomes, and cached for 
when confronted with a similar choice later on. Such learning processes enables a system 
to flexibly adapt to a changing world and use environmental resources optimally. 
 It has long been known that function of the prefrontal cortex (PFC) underlies these 
value-based learning and decision making processes4-8. For example, lesions of different 
parts of the rodent PFC impair value-based decision making tasks like reversal learning9,10, set 
shifting11 and probabilistic discounting12. Importantly, value-based decisions are the result 
of a dynamic process weighing outcome expectancies, innate preferences and explorative 
urges, and alterations in overt behavior do not necessarily inform about which component 
processes are changed. Here, we sought to study the anatomical organization of these core 
neurocomputational processes underlying value-based learning and decision making in the 
rat PFC.
 To this aim, we tested animals in a probabilistic reversal learning task9,13 after 
pharmacological inactivation of four major subregions of the PFC that have been implicated 
in different aspects of value-based behavior4-12; the prelimbic cortex (PrL), the infralimbic 
cortex (IL), the medial orbitofrontal cortex (mOFC) and the lateral orbitofrontal cortex (lOFC). 
In the task, animals could earn sucrose pellets by responding into one of two holes that 
differed in the probability of delivering reward; one high-probability hole that gave 80% 
chance of reward and one low-probability hole that gave 20% chance of reward (Fig. 1a,b). 
Depending on the performance of the animals, reward contingencies switched between the 
two response options throughout the session, so that animals had to track the value of the 
options by integrating past wins and losses into a net expected value. After the animals had 
reached stable performance (after ~10 training sessions, see Online Methods), we infused 
a cocktail of the GABA receptor agonists baclofen and muscimol (or saline) into one of the 

four subregions of the PFC (Fig. S1).
 Inactivation of any of the four PFC regions affected probabilistic reversal learning, 
but in different ways (Fig. 1c and Fig. S2). Inactivation of the PrL and mOFC reduced the total 
number of rewards the animals obtained, indicative of impaired performance. IL and lOFC 
inactivation did not change this outcome measure, but did result in a significant reduction 
in the total number of reversals the animals achieved (i.e., the rats less often reached the 
criterion of 8 consecutive responses at the high-probability nosepoke hole). Despite the fact 
that this did not lead to explicit negative consequences for the animals, a reduction in the 
total number of reversals indicates lower task volatility (as reward contingencies switched 
less often), which may be easier for the animals and may therefore mask a reduction in 
performance. Further analyses of the data demonstrated that inactivation of all regions 
reduced win-stay behavior, and PrL inactivation also increased lose-stay behavior. These 
win- and lose-stay measures provide a quantitative explanation for the behavioral response 
to the outcome of the last trial. However, they are poor indicators of positive and negative 
feedback learning when the animals more gradually switch behavior in response to changes 
in reward contingencies14, not least because in the task used here, the animals have to track 
the value of a response over an extended history of trial outcomes, rather than just one.
 To gain insight into the computational mechanisms subserving reversal learning 
that may be disrupted by the pharmacological inactivations, we fit a series of Q-learning 
models to the data. These models assume that the animals perform the task in order to 
maximize reward, by using past outcomes to track the value of each of the two nosepoke 
holes, and make choices based on these cached values. The first model we tested is the 
classic Rescorla-Wagner Q-learning model, where the value of each choice option is updated 

Figure 1 PFC inactivation impairs probabilistic reversal learning  
a. Probabilistic reversal learning setup  
b. Example session of one rat  
c. Pharmacological PFC inactivation impaired task performance. See Supplementary statistics table for 
statistics; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 (post-hoc Holm-Sidak test).
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according to the prediction error1, i.e., the difference between the expected outcome and 
the actually received outcome according to learning rate α. Considering that a wealth of 
literature implicates the PFC in learning and decision making15, this model should be able 
to demonstrate any general deficits in value-based learning caused by the inactivations. 
We next extended this model in various ways. Model 2 included separate learning rates for 
negative and positive feedback, α+ and α-, to allow for a certain manipulation to impact only 
one type of feedback learning, for example reward learning but not punishment learning. 
In model 3, we added a stickiness parameter π to this second model to assess the degree 
to which an animal perseverates on one choice option, independent of prior outcomes16. 
Model 4 was a Rescorla-Wagner/Pearce-Hall hybrid model17,18 which was used to assess 
whether the learning rate changes when task volatility is higher (i.e., in proportion to the 
absolute prediction error, for example after a reversal). For all models, the value estimates 
were converted to choice probabilities using a Softmax function, allowing choice behavior 
to be stochastic to an extent described by parameter 1/β (often called the explore/exploit 
parameter; see online Methods). To estimate which of these learning mechanisms best 
described the animals’ behavior, we fit these models to each individual reversal learning 
session and performed random effects model selection across all the baseline sessions, 
using the individual log-model-evidence estimates19 (Fig. 2a).
 Model 3 provided the best fit to the data (protected exceedance probability = 1; see 
Supplementary table 1), and explains the behavior of the animal on the basis of reward and 
punishment learning rates α+ and α-, stickiness parameter π, and stochasticity parameter β 
(Fig. 2b). Assessing the parameter values as a function of inactivation condition revealed 
differential contributions of the four PFC subregions to these different computational 
building blocks of value-based decision making (Fig. 2c). Pharmacological inactivation of 
the PrL and lOFC decreased both positive and negative learning rates, indicative of a reduced 
integration of past outcomes into future decisions. In contrast, IL and mOFC inactivation 
impaired negative, but not positive, learning rates, and also decreased stickiness, revealing 
that these animals showed less persistence on the same choice option; note that this is 
not necessarily disadvantageous. Importantly, estimates of stochasticity parameter β 
were unchanged across the inactivations, suggesting that pharmacological inactivation of 
the PFC affected value-based learning, but not value-based decision making. Although the 
different PFC regions show overlap in function (Fig. 3), inactivation did not always evoke the 
same changes in the classic measures of task performance (Fig. 1c), which is likely the result 
of an interaction between differences in baseline between the groups and differences in the 
strength of the effects of the PFC inactivations on the computational model parameters.
 Given the observed overlap in value-based learning function, we speculate that in 
the rat PFC, there is (1) redundant coding of value-based learning and/or (2) coding of value-
based learning function across a larger, interconnected network, that eventually mediates 
decision making. The former option could be indicative of the existence of a neural safety 
net, that ensures that essential cognitive operations can continue if activity in a part of the 

Figure 2 Q-learning model coefficients
a. We fit several reinforcement learning models to our data, and estimated which model (i.e., strategy) 
best described the animals’ behavior. Numbers in parentheses refer to the number of free parameters in 
the model. 
b. The “winning” model was a Rescorla Wagner model, in which the animals dynamically track the value 
of both nosepokes by learning from reward and (omission) punishment.  
c. Best-fit model parameters for each session. Inactivation of the PrL and lOFC impaired reward and 
punishment learning, whereas inactivation of the IL and mOFC impaired punishment learning and 
reduced choice perseveration (i.e. repeated choices for the same nosepoke hole). * P < 0.05, ** P < 0.01, 
*** P < 0.001 (post-hoc Holm-Sidak test). 
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PFC is impaired, for example by neurological disease, pharmacological insults, or stress. 
Alternatively, it may suggest distributed, parallel processing of value-related information 
across different brain circuits, as has been proposed by recent theories20-22. The latter option 
would implicate modular processing of information, so that dysfunction of one module 
of the network would directly hamper processing of feedback, leading to impairments in 
learning.
 Deficits in reversal learning have been observed before after pharmacological 
inactivation or lesion of regions of the PFC across different species, although effects of 
neuronal manipulations of the medial PFC (PrL/IL) have been inconsistent10. It has been 
suggested that the medial PFC gets engaged in reversal learning only when the task becomes 
more complex and requires high attention10, for example when reward contingencies become 
probabilistic. Indeed, most studies that have assessed the role of the medial PFC in reversal 
learning have used a deterministic version of the task, i.e., in which reward contingencies are 
non-probabilistic. Animals may then rely on more heuristic strategies to perform the task, 
such as win-stay/lose-switch23, rather than by actively tracking the outcome of the choice 
options, thereby not requiring enhanced value-based learning function. One study used an 
experimental design almost identical to the one used in this study to assess the role of 
the rat PFC in reversal learning, and found similar changes in the classic measures of task 
performance after inactivation of the mOFC and lOFC9. However, they observed no effects 
of IL inactivation and a paradoxical increase in performance after PrL inactivation, which 
may be the result of our infusion being placed more dorsal (PrL) or anterior (IL) than theirs. 
Alternatively, it may be that the same neurocomputational processes were affected by the 
inactivation in their study, but that this did not lead to significant changes in the classic 
(compound) measures of task performance, perhaps because of differences in baseline 
performance. Indeed, the authors suggested that the seeming improvement in reversal 
learning performance after PrL inactivation may actually be the result of impairments in 
monitoring positive and negative outcomes of the task9.
 Previous work has indicated competing function of the PrL and IL in motivated 
behavior, with the PrL mediating goal-direct learning and the IL mediating habitual 
responding24. Our observation that both these areas are involved in negative feedback 
learning provides evidence against this antagonistic hypothesis, although the observed 
involvement of the PrL in positive feedback learning versus the IL in choice perseveration 

may underlie the findings supporting this original hypothesis, as reward seeking and motor 
perseveration may logically be related to goal-directed and habitual behavior, respectively. 
 The OFC comprises a large part of the PFC and has been shown to be involved in a 
variety of decision making tasks, with functional heterogeneity along both the mediolateral 
and the anteroposterior axis25. An extensive list of functions have been ascribed to the 
OFC26, most of which encompass some form of multisensory integration of reward and 
environment. In this study, we mainly targeted the anterior MO/VO region of the mOFC and 
the more dorsal part of the VO/LO region of the lOFC, which have been linked to decision 
making under uncertainty and outcome prediction, respectively25. However, lesions of the 
lOFC affect a larger array of tasks than just those involving outcome prediction, which 
suggests that lOFC function may be captured better by other theories, such as the more 
recent theory that the lOFC keeps a cognitive map of task structure, thereby serving different 
functions depending on the type of behavioral task27. One interesting hypothesis is that the 
mOFC may serve as a bridge between the lOFC and medial parts of the PFC (including PrL 
and IL)25,28, suggesting serial processing of information, which may in part explain the shared 
functionality that we observed. 
 Overall, our study reveals a rat PFC that is anatomically organized into functional 
districts, in which each function underlying value-based learning depends on activity in 
at least two different PFC subregions. Such a topographic map of PFC function suggests 
an intricate balance between an efficient distribution of function, so that not all regions 
are engaged in all aspects of task behavior, and safeguarding of function, so that each 
function relies on activity in at least two brain regions. Interestingly, punishment learning 
was dependent on each of the four PFC regions, suggesting that negative feedback learning 
is especially robustly integrated in the frontal lobe, perhaps because of its importance for 
survival. Altogether, we demonstrate a specialized but overlapping functional-anatomical 
organization of higher-order cognition within the rat PFC, providing exciting new insights 
into the functional architecture of the mammalian brain.

Methods
1 Animals
48 adult male (>300 g) Long-Evans rats (Janvier labs, France) were used for the experiments. 
Rats were solitarily housed in a humidity- and temperature-controlled room and were kept on 
a 12h/12h reversed day/night cycle (lights off at 8AM). All experiments took place in the dark 
phase of the cycle. Animals were kept on food restriction (~5g standard lab chow per 100g 
body weight per day) during behavioral training and the experiments. All experiments were 
conducted in accordance with European (2010/63/EU) and Dutch (Wet op de Dierproeven, 
revised 2014) law, and approved by the Dutch Central Animal Testing Committee, and by the 
Animal Ethics Committee and the Animal Welfare Body of Utrecht University.

2 Surgeries
Animals were implanted with bilateral guide cannulas above each of the target areas (one 
brain area per group). For surgery, animals were anaesthetized with an i.m. injection of a 
mixture of 10 mg/kg fluanisone and 0.315 mg/kg fentanyl (Hypnorm, Janssen Pharmaceutica, 
Beerse, Belgium). Animals were placed in a stereotaxic apparatus (David Kopf Instruments, 
Tujunga, USA), and an incision was made along the midline of the skull. Using a dental 
drill, two small craniotomies were made above the area of interest, and 26G guide cannulas 
(Plastic Ones, Roanoke, USA) were lowered to the following positions (relative to Bregma):
   PrL   AP +3.2 mm ML ±0.6 mm DV -2.6 mm from skull
   IL   AP +3.2 mm ML ±0.6 mm DV -4.3 mm from skull
   mOFC   AP +4.4 mm ML ±0.6 mm DV -3.8 mm from skull

Figure 3 Visual summary. The four studied PFC regions have distinct, albeit 
overlapping functions in value-based decision making. All regions are involved in 
punishment learning.
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   lOFC   AP +3.6 mm ML ±2.6 mm DV -3.7 mm from skull under a 5° angle
For the PrL, IL and mOFC groups, guide cannulas were used with a bilateral protrusion of 5 
mm (with 1.2 mm space between the protrusions). For the lOFC group, single cannulas were 
used with a protrusion length of 5 mm.
 Guide cannulas were secured with screws, dental glue (C&B Metabond, Parkell Prod 
Inc., Edgewood, USA) and dental cement, and the skin of the animals was sutured so that no 
skull was exposed. After the surgery, animals received saline (10 ml once, s.c.) and carprofen 
for pain relief (5 mg/kg, 3x daily, s.c.). Dummy injectors were placed into the cannula. Animals 
were allowed to recover for at least 7 days before behavioral training started. 

3 Behavioral task
The behavioral task was conducted in operant chambers (Med Associates Inc., USA, 
30.5×24.2×21.0 cm), placed within sound-attenuated cubicles. The boxes contained two 
illuminated nosepoke holes, a tone generator and a house light on one side of the chamber, 
and on the other side of the chamber a food receptacle delivering 45mg sucrose pellets (SP; 
5UTL, TestDiet, USA) flanked by two cue lights. 
 At task initiation, one of the two nosepoke holes was randomly assigned as the 
high-probability hole, that gave 80% chance on reward and 20% chance on a time-out, and 
the other hole was assigned as the low-probability hole, which gave 20% chance on reward 
and 80% chance on a time-out (Fig. 1a). Determination of the response outcome (reward or 
time-out) happened through independent sampling, so that the outcome of the previous trial 
did not affect the odds of reward in the next trial. The start of the session was signaled to 
the animal by illumination of the house light and the two nosepoke holes.
 Directly after a ‘win’ response (i.e., a responses in one of the two nosepoke holes 
that resulted in reward delivery), the lights in the two nosepoke holes were turned off, a 
sucrose pellet was delivered into the food receptacle, a tone was played for 0.5s, and the 
two cue lights next to the food receptacle were turned on. Consumption of the reward was 
measured by an infrared light sensor in the food receptacle, after which the cue lights were 
extinguished and a new trial was initiated. After a ‘lose’ response (i.e., a response in one of 
the two nosepoke holes that resulted in a time-out), the house light and lights in the nosepoke 
holes were turned off, and a 10s time-out started during which animals remained in the dark, 
and poking either of the two nosepoke holes was without scheduled consequences. After 
10s, a new trial was automatically initiated, signaled to the animal by the illumination of the 
house light and the two nosepoke holes.
 When the animal made 8 consecutive responses at the high-probability nosepoke 
hole, the contingencies reversed, so that the previously high-probability nosepoke hole 
became the low-probability nosepoke hole, and vice versa. The task automatically terminated 
after 90 minutes, and animals were allowed to make an unrestricted number of trials during 
this period.
 The task was optimized for computational modeling by making two major changes 
to the classic probabilistic reversal learning paradigm. First, animals were allowed to make 
an unrestricted amount of trials during the 90-minute session, as there is a strong positive 
relation between reliability of model parameter estimation and the amount of trials on which 
that estimation is based. Second, there was no restriction to the time in which the animals 
could make a response at one of the nosepoke holes (i.e., no trials were designated as 
‘omissions’), because it is unknown how an omitted trial affects the value representation of 
the two nosepoke holes.
 For each trial, the choice of the animal, the side of the high-probability nosepoke 
hole, the outcome of the trial (win or lose), and the timestamps of trial start and nosepoke 
response were monitored. Win-stay was defined as the fraction of win trials on which the 
animal chose that same nosepoke hole on the next trial. Lose-stay was defined as the 

fraction of lose trials on which the animal chose that same nosepoke hole on the next trial.

4 Pharmacological inactivations
Infusions took place when animals reached stable performance in the task, which was 
typically after ~10 training sessions, which was defined as a non-significant repeated 
measures one-way ANOVA on the total number of reversals per 100 trials for 3 consecutive 
days. One day before test sessions, all animals received an infusion of saline, to habituate 
them to the infusion procedure. The next days, animals received an infusion with saline or 
a cocktail of baclofen (1 nmol; Sigma-Aldrich, The Netherlands) and muscimol (0.1 nmol; 
Sigma-Aldrich, The Netherlands) dissolved in saline, counterbalanced between days, with 
24h in between. 
 For the infusion, dummy injectors were removed and replaced by injectors that 
injected 0.3 μl/side of the dissolved drug (or saline) at a rate of 1 μl/min with a syringe pump 
(Harvard apparatus, Holliston, USA). The injectors were kept in place for an additional 30 
seconds after the infusion to allow for proper diffusion of the drug into the tissue. Injectors 
of the double cannulas protruded 1 mm, and the injectors of the single cannulas protruded 
0.4 mm below the termination point of the guide cannula. After the infusion, the animals 
were placed back in their home cage for 10 minutes, after which they were placed in the 
operant boxes.
 To reduce intra-animal variability, thereby reducing the number of animals 
necessary to achieve the  same statistical power, we repeated the experiment a second 
time, and averaged all task measures across the two conditions. In other words, animals 
were measured twice after saline infusion, and twice after baclofen+muscimol infusion, and 
the outcomes were averaged to get one single saline, and one single baclofen+muscimol 
measure, which was used in further analyses.

5 Computational modeling
5.1 Basic model
We fit a series of Q-learning models to our data to assess which model (i.e., strategy) best 
described the animals’ behavior in the task. The first model we tested is the classic Rescorla-
Wagner Q-learning model (RW1), that assumes that on every trial t, the nosepoke values are 
updated based on the reward prediction error (RPE), which is the difference between the 
reward received (this is 1 for win trials, 0 for lose trials) and the reward expected (i.e., the 
expected value Q of the chosen nosepoke hole s):

RPEt = outcomet - Qs,t-1                      (1)

so that

 
Q

Q
RPE

1 for win  trials

0 for lose trialst
s t

s t

, 1

, 1

=
−

−

⎧
⎨
⎪

⎩⎪
−

−

                    (2)

Nosepoke hole values were subsequently updated with learning rate α according to a 
Q-learning rule:

Qs,t = Qs,t-1 + α  ×  RPEt                      (3)

Note that the value of the unchosen side was not updated and thus retained its previous 
value. For the first trial, both nosepoke values were initiated at 0.5.
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The relationship between nosepoke values Qleft and Qright, and the probability that the rat 
chooses  the left or right (pleft,t, respectively pright,t) nosepoke hole in every trial was described 
by a Softmax function: 

p
Q

Q Q

exp( )

exp( ) exp( )right t
right t

left t right t
,

,

, ,

β

β β
=

⋅

⋅ + ⋅
                      (4)

 

and pleft,t = 1 - pright,t                             (5)

In this function, β is the Softmax inverse temperature, which indicates how value-driven the 
agent’s choices are. If β becomes very large, then the value function β∙Qs,t of the highest valued 
side becomes dominant, and the probability that the agents chooses that side approaches 
1. Is β zero, then pleft,t = pright,t = e0/(e0 + e0) = 0.5. β is sometimes referred to as the explore/
exploit parameter, where a low β favors exploration (i.e., sampling of all options) and a high 
β favors exploitation (i.e., choosing the option which has proven to be beneficial). Therefore, 
a decrease in β may reflect a more general disruption of behavior, since it indicates that the 
animal chose more randomly. 

All the subsequently tested models are extensions of this Rescorla-Wagner Q-learning 
model. 

5.2 Model extensions
The second model we tested (RW2) is similar to RW1, except that separate learning rates 
were used for learning from positive (reward delivery; win trials) and negative (reward 
omission; lose trials) feedback, α+ and α-, respectively. The value updating function is thus 
given by equation 6:

Q
Q
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                   (6)

Model RW3 is an extension of model RW2 and adds a stickiness parameter π to the model. 
This parameter indicates a preference for the previously chosen (π > 0; perseveration) or 
previously unchosen (π < 0; alternation) option, so that the Softmax is given by equation 7:

p
Q

Q Q

exp( )

exp( ) exp( )right t
right t right t

left t left t right t right t
,

, ,

, , , ,

β π φ

β π φ β π φ
=

⋅ + ⋅

⋅ + ⋅ + ⋅ + ⋅
                  (7)

Here, ɸ is a boolean with ɸ = 1 if that hole was chosen in the previous trial, and ɸ = 0 if not. 
For example, if the right nosepoke hole was chosen in trial t-1, then ɸright,t becomes 1, and ɸleft,t 
becomes 0. This adds a certain amount π to the value function of the right nosepoke hole in 
trial t, in addition to the nosepoke hole’s expected value Qright,t.

In addition, we tested a hybrid Rescorla-Wagner/Pearce-Hall model of reinforcement 
learning, that is able to account for an increased learning rate when task volatility is higher, 
for example right after a reversal. As such, it has a fixed single learning rate α, and a variable 
learning rate γ that is dependent on the unsigned prediction error to a certain amount η 
(which was a free variable in the model).

The following table shows the equations that are used for value updating and the conversion 
of values into action probabilities for each of the five models:

Model
Free 

parameters
Learning model Observation equation

RW1 𝛼𝛼, 𝛽𝛽

RW2 𝛼𝛼+, 𝛼𝛼-, 𝛽𝛽

RW3 𝛼𝛼+, 𝛼𝛼-, 𝛽𝛽, 𝜋𝜋

RW-PH 𝛼𝛼, 𝛽𝛽, 𝜋𝜋, 𝜂𝜂

 Qs,t = {
Qs,t−1 + α+ ⋅ RPEt for win trials

Qs,t−1 + α− ⋅ RPEt for lose trials

 pright,t =
exp(β ⋅ Qright,t + π ⋅ ϕright,t)

exp(β ⋅ Qleft,t + π ⋅ ϕleft,t) + exp(β ⋅ Qright,t + π ⋅ ϕright,t)

 Qs,t = {
Qs,t−1 + α+ ⋅ RPEt for win trials

Qs,t−1 + α− ⋅ RPEt for lose trials

 pright,t =
exp(β ⋅ Qright,t + π ⋅ ϕright,t)

exp(β ⋅ Qleft,t + π ⋅ ϕleft,t) + exp(β ⋅ Qright,t + π ⋅ ϕright,t)

 Qs,t = {
Qs,t−1 + α ⋅ RPEt for win trials

Qs,t−1 + α ⋅ RPEt for lose trials

 pright,t =
exp(β ⋅ Qright,t)

exp(β ⋅ Qleft,t) + exp(β ⋅ Qright,t)

 pright,t =
exp(β ⋅ Qright,t)

exp(β ⋅ Qleft,t) + exp(β ⋅ Qright,t)

  

with 

 

Qs,t = {
Qs,t−1 + α ⋅ γt ⋅ RPEt for win trials

Qs,t−1 + α ⋅ γt ⋅ RPEt for lose trials

γt = η ⋅ |RPEt | + (1 − η) ⋅ γt-1

In this table, 𝛼 = Rescorla-Wagner learning rate, 𝛽 = choice stochasticity, 𝜋 = stickiness 
factor, 𝜂 = Pearce-Hall associability factor, Qs,t = value of nosepoke s on trial t, ps,t = choice 
probability of nosepoke s on trial t, 𝜙 = boolean that is 1 if nosepoke s is chosen on the 
previous trial and 0 if unchosen on previous trial, RPE = reward prediction error, and 𝛾t = 
associability on trial t.

An overview of the interpretation of the parameters of the ‘winning’ RW3 model:

5.3 Parameter estimation
To obtain realistic estimates of the model parameters on a population level, 
we used maximum a posteriori probability (MAP) estimation. This was done 
because a simple grid search sometimes lead to unrealistic parameter values 
(for example, learning rates >1). The used priors for the MAP estimation were: 
 α+, α-  betapdf(1.5, 1.5)
 π  normpdf(0.5, 0.5)
 β  normpdf(2, 2)

Multiplication of these priors with the likelihood gives the posterior probability of the model 
parameters given the observed choice sequence:

P P P({ , , , } | data,model) (data |model,{ , , , }) ({ , , , } |model)α α π β α α π β α α π β= ⋅+ − + − + −        (8)

in which P(data | model, {α+, α-, π, β}) is the likelihood of the observed choice sequence (from 
trial 1 to the last trial T) given the model and the parameter settings (computed as the log 
likelihood):
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 P P Q Qlog( (data |model,{ , , , , })) log( (choice | , , , ))
t

T

t left t right t left t right t
1

, , , ,∑α α π βη φ φ=+ −

=

         (9)

The posterior probability was calculated for many combinations of parameters {α+, α-, π, β}, 
and arranged in a multidimensional grid. Best-fit parameter values were then estimated by 
integrating these posterior probabilities over the parameter’s range, marginalized over the 
other parameters.

5.4  Model comparisons
The log-model evidences of individual sessions were penalized for model complexity by 
computing the Akaike Information Criterion and Bayesian Information Criterion:

AIC = 2*[# of free parameters in the model] - 2*log(likelihood)                      (10)
  
BIC = -2*log(likelihood) + [# of free parameters in the model]*log([# of trials])                    (11)

As such, a lower value of the AIC and BIC reflects more evidence in favor of the model. In 
addition, figure 2a contains a random choice model, in which all choices had a probability of 
0.5, hence the log likelihood for each session was computed as log(0.5total trials). To compare 
models, we entered the AIC’s of all baseline sessions (i.e., after saline infusion) in a random 
effects Bayesian model comparison (implemented in SPM12) analysis to assess the 
evidence that one model is more likely than any of the others (see ref. 19).

6 Statistics
Statistical tests were performed with Prism 6 (GraphPad Software Inc.). For each measure, 
a 2-way repeated measures analysis of variance (ANOVA) was used, in which drug (saline 
versus baclofen+muscimol) was used as a within-subjects repeated measures factor, and 
treatment group (PrL, IL, mOFC and lOFC) as a between-subjects factor. When the ANOVA 
yielded a significant interaction effect, or a  main effect of drug (p < 0.05), a post-hoc repeated 
measures Holm-Sidak test was used to test, for each group, whether there was a significant 
difference between the saline and baclofen+muscimol sessions. All statistics are presented 
in the supplementary statistics table. In all figures: * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001.

7 Data availability
All behavioral data is openly available at http://www.github.com/jeroenphv/.

8 Exclusion criteria
All experimental groups started with 12 animals. The following animals were excluded from 
the experiment or analysis:
PrL group: none (final group n = 12 rats).
IL group: 2 rats died during the surgery, 1 rat was excluded due to misplacement of the 
cannulas (final group n = 9 rats).
mOFC group: 2 rats died during the surgery, 1 rat was excluded due to misplacement of the 
cannulas (final group n = 9 rats).
lOFC group: 1 rat died during the surgery, 2 rats were excluded due to misplacement of the 
cannulas (final group n = 9 rats).
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Acceptable infusion sites
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SUPPLEMENTARY FIGURE 2

Additional measures of the task after pharmacological PFC inactivation. Reaction times after a win trial 
were generally higher than after a loss trial, since in win trials the new trial started immediately after the 
animals entered the food port (and spent time eating the pellet). * P < 0.05, *** P < 0.001 (post-hoc Holm-
Sidak test).

SUPPLEMENTARY TABLE 1

Abbreviations: LL, log-likelihood; Pexplained, fraction of choices explained by the model on every 
single trial (total trials on average ≈ 227); AIC, Akaike Information Criterion; BIC, Bayesian Information 
Criterion; XP, exceedance probability; PXP, protected exceedance probability.

Model
Free 

parameters
Aggregate 

LL Pexplained

Aggregate 
AIC

Aggregate 
BIC

# of sessions best 
described by model XP PXP

1 Random - -12286.0 0.5000 24572.1 24572.1 0/78 0 0

2
Rescorla-

Wagner 1
α, β -10379.3 0.5568 21070.6 21596.3 19/78 0 0

3
Rescorla-

Wagner 2
α+, α-, β -10275.8 0.5600 21019.5 21808.1 7/78 0 0

4
Rescorla-

Wagner 3
α+, α-, β, π -9988.5 0.5692 20601.1 21652.4 46/78 1 1

5

Rescorla-

Wagner-

Pearce-Hall 

hybrid

α, β, π, η -10065.7 0.5667 20755.3 21806.6 6/78 0 0
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Dopamine is thought to have an important mediating role in value-based 
learning and decision making by signaling reward prediction errors and 
facilitating cognitive flexibility, motivation and movement. Dopamine 
receptors can roughly be divided into the D1 and D2 subtypes, and it has 
been hypothesized that in the striatum these two types of receptors have 
an antagonistic function in facilitating approach and avoidance behaviors, 
respectively. Here, we tested the contribution of these striatal dopamine 
receptors to the core processes underlying value-based learning and 
decision making in rats. By using computational trial-by-trial analysis of 
data of a probabilistic reversal learning task after systemic or local treatment 
with dopamine D1 and D2 receptor agonists and antagonists, we show that 
negative feedback learning is mediated by stimulation of the dopamine D2 
receptor and positive feedback learning by stimulation of the dopamine D1 
receptor in the ventral, but not dorsal, striatum. Furthermore, infusion of 
D2 agonist quinpirole in the ventral or dorsolateral, but not dorsomedial, 
striatum promoted explorative choice behavior, suggesting an additional 
function of these areas in value-based decision making. Together, these 
data support the idea that dopamine D1 and D2 receptors have a dissociable 
function in mediating positive and negative feedback learning, and provide 
evidence that dopamine facilitates value-based behaviors through distinct 
striatal regions.

1. Introduction
Many decisions we make in everyday life are the result of a process in which the expected 
gains and losses of different courses of action are weighed and compared, and these 
expectations are often based on the outcomes of similar actions taken in the past. The 
process by which these action-outcome associations are acquired and stored to guide 
future behavior, thereby linking positive and negative experiences to actions under different 
physiological states, is called reinforcement learning1,2. Deficits in this process have been 
implicated in a wide variety of mental conditions, including depression, mania, attention-
deficit/hyperactivity disorder and addiction3-9.
 Dopamine (DA) is an important modulator of motivated behaviors, and it does so 
by attributing salience to relevant cues10, by guiding movement11, and by signaling reward 
prediction errors12-14. Especially this latter function of DA is thought to be fundamental for 
value-based learning. Reward prediction error theory posits that midbrain DA neurons signal 
a discrepancy between anticipated and received reward or punishment. As such, when 
a rewarding outcome is better than expected, phasic firing of DA neurons is transiently 
increased, while a worse-than-expected outcome triggers a reduction in firing. Downstream 
dopaminoreceptive brain areas can use these signals to update future expectations of 
actions, in order to adapt to environmental changes. Furthermore, DA has been implicated in 
cognitive flexibility, another core process involved in decision making, since manipulations 
of the DA system disrupt performance in tasks such as reversal learning and set shifting15-18. 
Importantly, many of the neuropsychiatric conditions that have been associated with deficits 
in learning, cognitive flexibility and decision making have also been linked to alterations in 
the DA system19-25, and pharmacological treatment of many of these conditions is aimed at 
DAergic neurotransmission in the brain. Despite the wide use of these types of medication, 
little is known about how these drugs affect physiological processes in the brain, and 

specifically if and how they change the computational mechanisms underlying decision 
making. Furthermore, it is has been suggested that the D1 subclass of striatal DA receptors 
is mainly involved in behavioral activation and appetitive learning, while the D2 subclass 
is important for behavioral inhibition and avoidance learning26-28. However, whether this is 
directly driven by antagonistic contributions to positive versus negative feedback learning 
remains unknown.
 Here, we studied the role of DAergic neurotransmission in the striatum in value-
based learning in rats using a probabilistic reversal learning paradigm29. By applying a 
computational Q leaning model1,30-32 to the data, we tried to gain further insight into the 
strategy the animals used to perform the task, and thereby unravel how the two major 
subclasses of DA receptors contribute to the core processes underlying decision making. 
Specifically, we studied the effects of pharmacological activation and inactivation of the DA 
D1 and D2 receptors in the ventral striatum (VS), dorsolateral striatum (DLS) and dorsomedial 
striatum (DMS) on reward learning, punishment learning, choice perseveration, and choice 
stochasticity. We predicted an important role of DA receptors in the VS in reward and 
punishment learning, given its function in processing reward prediction error and facilitating 
motivation18,33, and of DA receptors in the dorsal parts of the striatum in mediating cognitive 
flexibility, given its function in balancing goal-directed and habitual behaviors34,35.

2. Materials and methods
2.1 Animals
A total of 68 adult male (>300 g) Long-Evans rats (Janvier labs, France) were used for 
the experiments. Rats were housed in pairs (for systemic drug treatment) or singly (for 
intracranial infusions) in a humidity- and temperature-controlled room and they were kept 
on a 12h/12h reversed day/night cycle (lights off at 8AM). All experiments took place in 
the dark phase of the animals. Animals were kept on food restriction (~4.5g standard lab 
chow per 100g body weight per day) during behavioral training and the experiments. All 
experiments were conducted in accordance with European (2010/63/EU) and Dutch (Wet op 
de Dierproeven, 2014) legislation, and approved by the Animal Ethics Committee and Animal 
Welfare Body of Utrecht University.

Six independent cohorts of animals were used for the experiments:
Cohort A (n = 15): systemic treatment with quinpirole, SCH23390 and SKF82958
Cohort B (n = 9): systemic treatment with raclopride, SCH23390 and SKF82958
Cohort C (n = 9): systemic treatment with quinpirole, raclopride and raclopride
Cohort D (n = 16): VS infusions
Cohort E (n = 6): DLS infusions
Cohort F (n = 13): DLS infusions (5) and DMS infusions (8)

Animals in cohort D, E and F were tested with all four drugs. In cohort D, the DA D2 receptor 
infusion experiment was conducted first, after which 5 animals were transferred to another 
experiment; the D1 infusion experiment was conducted in the remaining 11 animals. 

2.2  Surgeries
The rats in cohorts D, E and F were equipped with guide cannulas aimed at the three 
investigated subregions of the striatum. Animals were anesthetized by an intramuscular 
injection of a cocktail of 10 mg/kg fluanisone and 0.3 mg/kg fentanyl (Hypnorm, Jansen 
Pharmaceutica, Belgium) and were subsequently placed in a stereotaxic apparatus. An 
incision was made along the midline of the skull and additional analgesia was applied 
by spraying lidocaine on the skull. Two small craniotomies were made above the area of 
interest, and two 26G guide cannulas (Plastics One, United States) were placed bilaterally 
above the region of interest. The used coordinates were:
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  VS  AP +1.2 mm  ML ±2.1 mm  DV -6.3 mm from skull under a 5° angle
                  or AP +1.2 mm  ML ±2.7 mm  DV -7.0 mm from skull under a 10° angle
  DMS  AP +1.2 mm  ML ±2.3 mm  DV -4.1 mm from skull under a 5° angle
  DLS  AP +1.2 mm  ML ±3.4 mm  DV -4.1 mm from skull
For the VS, 7 mm-long guide cannulas were used, and for the DLS and DMS 5 mm-long guide 
cannulas were used. Two different coordinates for the VS were used because we initially 
attempted to separately target the core and shell subregions of the nucleus accumbens, but 
we could not reliably determine whether the infused volume remained restricted to these 
subregions, especially since many of the infusions sites appeared on the border of the core 
and shell.
 After lowering the guide cannulas to the desired coordinates, they were secured 
with screws, dental glue (C&B Metabond, Parkell, United States) and dental cement. The skin 
around the headcap was sutured and animals subsequently received carprofen for pain relief 
(5 mg/kg subcutaneously, for 3 days) and 5 ml saline for rehydration (subcutaneously, once). 
Dummy injectors were placed inside the guide cannulas and behavioral training started after 
a recovery period of 7 days. 

2.3 Drugs, systemic injections and micro-infusions
The following drugs were used, which were all dissolved in sterile saline: (-)-quinpirole 
hydrochloride (Tocris Bioscience, United Kingdom), raclopride (Tocris Bioscience, United 
Kingdom), R(+)-SCH23390 hydrochloride (Sigma-Aldrich, The Netherlands), SKF82958 
hydrobromide (Tocris Bioscience, United Kingdom).
 For the systemic administration, all drugs were injected i.p., in a volume of 1 ml/
kg, 15-20 minutes before the start of the behavioral task. Each drug was tested on three 
consecutive days, in a counterbalanced, within-subjects design. Doses were used that have 
been shown to elicit behavioral effects in other tasks in rats36,37.
 For the intracranial infusion experiments, the drugs (per side 1 µg of SCH23390, 5 
µg of SKF82958, 7.5 µg of raclopride or 5 µg of quinpirole; based on previous experiments38-40) 
were infused in a volume of 0.5 µl per side, at a rate of 0.5 µl/min. Injectors protruded ~0.5 
mm beyond the termination point of the guide cannulas during infusions. After infusion, the 
injectors were kept in place for an additional 30 seconds to allow diffusion of the solution 
into the tissue. Per DA receptor, infusion of the agonist, antagonist or saline was tested on 
three consecutive days, in a counterbalanced, within-subjects design. 

2.4 Behavioral task
The behavioral task was conducted in operant chambers (Med Associates Inc., USA, 
30.5×24.2×21.0 cm), which were placed in sound-attenuating cubicles. Operant chambers 
were equipped with a food port in which 45 mg sucrose pellets (SP; 5TUL, TestDiet, USA) 
could be delivered, flanked by two levers, and two cue lights above the levers. On the other 
side of the chamber there was a house light and a tone generator. 
 The behavioral task and training took place as described in ref. 32. In brief, animals 
could earn sucrose pellets by responding on two levers that each differed in the probability 
of being reinforced (Figure 1a). At task initiation, one lever was randomly assigned as the 
high-probability lever and pressing this lever had a 80% chance of being reinforced (a sucrose 
pellet delivery) and 20% chance of not being reinforced (a 10s time-out). The other lever was 
assigned as the low-probability lever, which gave 20% chance of being reinforced and 80% of 
not being reinforced. Initial assignment of the left and right lever as high- or low-probability 
was counterbalanced between animals. When the animal made 8 consecutive responses on 
the high-probability lever, a reversal in reward contingencies occurred, so that the previously 
high-probability lever became the low-probability lever and vice versa. The task terminated 
after 90 minutes. 
 MedPC software automatically registered, per trial, the choices of the animals (left 

Figure 1 Task setup
a. Behavioral task and computational model.
b. Interpretation of computational model parameters
c. Trial-to-trial data of individual sessions was used to estimate the values of the parameters of the 

computational model. These model parameters describe the extent to which the trial outcomes 
affect the lever values (learning rates α+ and α-) and how these lever values are converted into 
action probabilities (stickiness parameter π and stochasticity parameter β).

96 97



CH
APTER 4   STRIATAL DO

PAM
IN

E RECEPTO
RS AN

D DECISIO
N

 M
AKIN

G

or right), the outcome of the trial (reinforced or not reinforced), the side of the high-probability 
lever (left or right), a timestamp of the start of the trial (time of lever protrusion) and a 
timestamp of the response (time of lever press). From these data, the following parameters 
were extracted using Matlab (R2014a, MathWorks Inc., United States): the number of trials 
completed in the 90-minute session; the median reaction time of the animals (computed by 
extracting the median value from all the reaction times, i.e., time of lever press minus time 
of trial start; note that the median was taken because reaction times were not normally 
distributed); the number of reversals per 100 trials (computed by dividing the total reversals 
by the number of trials completed, multiplied by 100); and the fraction of rewarded trials (i.e., 
the fraction of trials in which reward was obtained). The choice of the animals per trial (left 
or right) and the outcome of each trial (reinforced or not reinforced) were used to perform 
the computational analysis.

2.5 Computational model
We used computational modeling1,30-32 to extract different subcomponents of reward-based 
decision-making from the raw behavioral data (Figure 1b), and used a reinforcement learning 
model which we have previously shown to be the best descriptor of behavior of rats in the 
task32. This model assumes that on every trial, the agent (in this case the rat) makes a choice 
based on a representation of the value of each of these levers. In most cases, the agent 
chooses the lever with the highest value Q on each trial t. The relationship between lever 
values Qleft and Qright, and the probability that the agent chooses left or right (pleft,t, respectively 
pright,t) lever in every trial is described by a softmax function: 
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Q Q
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right t right t
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β π φ β π φ
=

⋅ + ⋅

⋅ + ⋅ + ⋅ + ⋅
                    (1)

and  pleft,t = 1 - pright,t                           (2)

 In this function, β is the softmax inverse temperature, which indicates how value-
driven the agent’s choices are. If β becomes very large, then the value function β∙Qs,t of the 
highest valued side becomes dominant, and the probability that the agent chooses that 
side approaches 1. Is β zero, then pleft,t = pright,t = e0/(e0 + e0) = 0.5 (π not taken into account), 
so that choice behavior becomes random. β is sometimes referred to as the explore/exploit 
parameter, where a low β favors exploration (i.e., sampling of all options) and a high β 
favors exploitation (i.e., choosing the option which has proven to be beneficial). Therefore, 
a decrease in β may reflect more explorative choice behavior, although a large decrease in 
β could also indicate a general disruption of behavior, i.e., that the animal chooses more 
randomly. 
 Factor π is a stickiness parameter that indicates a preference for the previously 
chosen (π > 0; perseveration) or previously unchosen (π < 0; alternation) option. Here, ɸ is a 
boolean with ɸ = 1 if that hole was chosen in the previous trial, and ɸ = 0 if not. For example, 
if the right lever was chosen in trial t-1, then ɸright,t becomes 1, and ɸleft,t becomes 0. This adds 
a certain amount of the value of π to the value function of the lever in trial t, in addition to the 
lever’s expected value Qright,t. 
 For the first trial, both lever values were initiated at 0.5. After each trial, the value of 
the chosen lever was updated based on the trial’s outcome according to a Q-learning rule:
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where Qs,t-1 is the value of the chosen lever. Here, α+ and α- indicate the agent’s ability to 
learn from positive (reinforcement; reward delivery), respectively negative (reward omission) 
feedback. The value of the unchosen side was not updated and thus retained its previous 
value.

2.6 Model fitting
The best-fit model parameters were estimated for each individual session, by calculating the 
probability of observing a certain choice sequence given a set of parameters {α+, α-, π, β}, by 
means of summing the logarithms of the probability of every observed choice from trial 1 to 
the last trial T:

P P Q Qlog( (data |model,{ , , , , })) log( (choice | , , , ))
t

T

t left t right t left t right t
1

, , , ,∑α α π βη φ φ=+ −

=

          (6)

We set weakly informative priors on the parameters to regularize the parameters towards 
realistic ones on a population level. The used priors were:
 α+, α-  betapdf(1.5, 1.5)
 π  normpdf(0.5, 0.5)
 β  normpdf(2, 2)
Multiplication of these priors with the likelihood gives the posterior probability of the model 
parameters given the observed choice sequence:

P P P({ , , , } | data,model) (data |model,{ , , , }) ({ , , , } |model)α α π β α α π β α α π β= ⋅+ − + − + −        (7)

The posterior probability was calculated for many combinations of parameters {α+, α-, π, β}, and 
arranged in a 4-dimensional grid (Figure 1c). Best-fit parameter values were then estimated 
by integrating these posterior probabilities over the parameter’s range, marginalized over the 
other three parameters (black lines next to the heatmaps in Figure 1c).

2.7 Histology
After the experiments, injection locations were histologically verified by an experimenter blind 
to the outcome of the behavioral experiments. Animals were first transcardially perfused 
by phosphate-buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were 
stored at 4°C, and were kept in 4% paraformaldehyde in PBS for at least 24 hours, followed 
by a 30% sucrose solution for at least 48 hours. Brains were sliced using a cryostat (50 µm) 
and were stained using a 5% Giemsa solution (Sigma-Aldrich, The Netherlands). One animal 
was excluded from the DMS group due to misplacement of the cannulas. See Figure 2 for an 
overview of the infusion sites.

2.8 Code accessibility
MedPC script of the probabilistic reversal learning task is available at github.com/jeroenphv/
ReversalLearning.

2.9 Statistics
Statistical tests were performed with Prism 6 (GraphPad Software Inc.). For each systemically 
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parameter π was not (Figure 3d).

3.2 VS infusions
Infusion of DA D1 receptor antagonist SCH23390 into the VS did not affect the total trials 
completed or the response latencies (Figure 4a). A significant increase in the total number of 
reversals was observed, but not in the fraction of rewarded trials (Figure 4a). However, none 
of the computational modeling parameters were significantly altered (Figure 4b), although 
a trend towards an increase in choice stochasticity parameter β was observed (p = .07; see 
also Supplementary Table 1). 
 Infusion of DA D1 receptor agonist SKF82958 did not significantly change the total 
trials completed, the response latency or the two measure of task performance (Figure 
4a). However, a significant decrease was observed in the value estimate of reward learning 
parameter α+, without effects on punishment learning rate α-, stickiness parameter π or 
stochasticity factor β.
 Infusion of DA D2 receptor antagonist raclopride into the VS significantly increased 
the animals’ response latency, but did not change the total trials completed (Figure 4c), 
the two measures of task performance (Figure 4c) or any of the computational model 
parameters (Figure 4d).
 In contrast, infusion of the DA D2 receptor agonist quinpirole affected different 
measures of task behavior. First, it strongly decreased the number of trials completed in 
the task and increased the response latency of the animals (Figure 4c). It also impaired 
task performance in terms of the total reversals achieved, but not in terms of the fraction of 
rewarded trials. This decreased number of reversals was driven by decreases in the value 
estimates of punishment learning parameter α- and choice stochasticity factor β, but not by 
changes in reward learning parameter α+ or stickiness parameter π (Figure 4d).

3.3 DLS infusions
Infusion of the DA D1 receptor antagonist SCH23390 or agonist SKF82958 into the DLS 
had no effect on any of the task measures (Figure 5a,b). In contrast, infusion of the DA D2 
receptor antagonist raclopride significantly reduced the total number of completed trials 
and increased response latencies, but did not affect the two measures of task performance 
(Figure 5c). Consistently, none of the computational modeling parameters were significantly 
changed (Figure 5d). Infusion of the DA D2 receptor agonist quinpirole into the DLS increased 
the animals’ response latency, but did not affect the total trials completed or any of the two 
performance measures (Figure 5c). It did, however, lead to a significant decrease in the value 
estimate of choice stochasticity factor β, without any effects on the other computational 
model parameters (Figure 5d). 

3.4 DMS infusions
After infusion into the DMS, none of the drugs affected performance in the task or changed 
the value estimates of the computational model parameters (Figure 6a-d). Moreover, DA 
D1 antagonist SCH23390 and agonist SKF82958 did not affect the trials completed 
in the task or response latencies (Figure 6a). Infusion of the DA D2 receptor antagonist 
raclopride increased the response latency of the animals, but did not change the number of 
trials completed (Figure 6c). Conversely, infusion of the DA D2 receptor agonist quinpirole 
decreased the number of trials completed in the task without a significant effect on the 
animals’ response latency (Figure 6c). 

Figure 2    Infusion sites included in the analysis

tested drug, a 1-way repeated measures analysis of variance (ANOVA) with Greenhouse-
Geisser correction was used to calculate significance. When the ANOVA yielded significant 
results (p < 0.05), a post-hoc LSD test was used to compare the high drug dose and the 
low drug dose with vehicle. For the intracranial infusion data, paired t-tests were performed 
in which the tested drugs were compared against vehicle. All statistics are presented in 
Supplementary Table 1. In all figures, the statistical range was denoted by the following 
symbols: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

3.  Results
3.1 Systemic administration
Treatment with the DA D1 receptor antagonist SCH23390 significantly decreased the total 
number of trials completed (Figure 3a; for statistical measures, see Supplementary Table 
1) and increased the reaction time. However, none of the parameters of the reinforcement 
learning model were significantly affected (Figure 3b), which was reflected by the lack of 
effect on the two general performance measures; total reversals per 100 trials and fraction 
of rewarded trials (Figure 3a).
 Injection of the DA D1 receptor agonist SKF82958 reduced the number of 
completed trials and increased the response latency (Figure 3a). Additionally, it led to a 
numerically modest but significant decrease in reward learning rate α+ (Figure 3b), but this 
had no consequences for the total reversals made by the animals or the fraction of rewarded 
trials (Figure 3a). No effects were observed on the value estimates of punishment learning 
parameter α+, perseveration parameter π or choice stochasticity factor β (Figure 3b).
 Treatment with the DA D2 receptor antagonist raclopride increased the response 
latency, without a significant effect on the total number of completed trials (Figure 3c). 
Furthermore, neither of the measures of task performance were affected (Figure 3c), which 
was reflected by the absence of effects on the computational model parameters (Figure 3d).
 Injection of the DA D2 receptor agonist quinpirole decreased the number of 
completed trials and increased response latencies (Figure 3c). It also impaired task 
performance, both in terms of the total number of reversals and the fraction of rewarded 
trials (Figure 3c). Computational analysis revealed that this was associated with a combined 
decrease in reward learning rate α+, which was numerically modest, and a decrease in 
punishment learning rate α-, which was numerically larger than the effect on reward learning 
(Figure 3d). Moreover, choice stochasticity factor β was significantly reduced, but stickiness 
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Figure 3 Systemic treatment with DA receptor (ant)agonists
a. Effects of systemic treatment with the DA D1 receptor antagonist SCH23390 (0, 0.02 or 0.04 mg/kg) 

and agonist SKF82958 (0, 0.2 or 0.4 mg/kg) on the behavioral measures of task performance. 
In all figures, the statistical range is denoted as: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 
0.0001.

a. Effects of systemic treatment with the DA D1 receptor antagonist SCH23390 (0, 0.02 or 0.04 mg/kg) 
and agonist SKF82958 (0, 0.2 or 0.4 mg/kg) on the computational modeling parameters.

b. Effects of systemic treatment with the DA D2 receptor antagonist raclopride (0, 0.1 or 0.2 mg/kg) 
and agonist quinpirole (0, 0.02 or 0.08 mg/kg) on the behavioral measures of task performance.

c. Effects of systemic treatment with the DA D2 receptor antagonist raclopride (0, 0.1 or 0.2 mg/kg) 
and agonist quinpirole (0, 0.02 or 0.08 mg/kg) on the computational modeling parameters.

Figure 4 Ventral striatum infusions. a,b. Effects of intra-VS infusion of the DA D1 receptor antagonist SCH23390 
(1 µg/side) and agonist SKF82958 (5 µg/side) on task performance. c,b. Effects of intra-VS infusion of the DA 
D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on task performance.
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Figure 5 Dorsolateral striatum infusions. a,b. Effects of intra-DLS infusion of the DA D1 receptor antagonist 
SCH23390 (1 µg/side) and agonist SKF82958 (5 µg/side) on task performance. c,b. Effects of intra-DLS 
infusion of the DA D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on task 
performance.

Figure 6 Dorsomedial striatum infusions. a,b. Effects of intra-DMS infusion of the DA D1 receptor antagonist 
SCH23390 (1 µg/side) and agonist SKF82958 (5 µg/side) on task performance. c,b. Effects of intra-DMS 
infusion of the DA D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on task 
performance.
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4.2 Effects of systemic treatment with DA drugs
Findings of the systemic treatment experiment (Table 1) show a reduction in reward 
learning after systemic activation of the DA D1 and D2 receptors, but not after treatment 
with their respective antagonists. Punishment learning was solely dependent on the DA 
D2 receptor, as treatment with the agonist quinpirole (but not the D2 receptor antagonist 
raclopride) decreased the value estimate of this parameter. Furthermore, treatment with the 
DA D2 receptor agonist quinpirole decreased choice stochasticity factor β, indicating that 
animals shifted towards a decision-making strategy of exploration, rather than exploitation. 
No effects were observed on the value estimate of stickiness parameter π, suggesting that 
choice perseveration is not dependent on DA neurotransmission.
 All drugs made the animals’ responses after trial start significantly slower (i.e., an 
increased response latency). Furthermore, all drugs, except for DA D2 antagonist raclopride, 
decreased the total number of trials completed in the task, indicative of changed motivation, 
attention or hunger. The finding that the pattern of effects on response latency and trials 
completed in most cases matched a “U” or “inverted-U” shape (Figure 3a,c), suggests that 
DA receptors normally act at optimal levels, and that deviations from that optimum, either 
through blockade of these receptors with the antagonist or activation of these receptors 
with the agonist, impair behavior.

4.3 Striatal subregion-specific effects
The striatal infusion experiments suggested that the effect of systemic treatment with the DA 
D1 receptor agonist SKF82958 on reward learning was exerted in the VS, and not the dorsal 
parts of the striatum (Table 1). The effects of systemic quinpirole on the computational 
model parameters were only partially replicated in the micro-infusion experiments. First, the 
decrease in punishment learning after systemic injection of quinpirole was also observed 
after infusion into the VS, but not DLS and DMS. Second, the decreased value estimate of 
choice stochasticity factor β was also seen after infusion of quinpirole in the VS and DLS, but 
not the DMS. Finally, the effect of systemic quinpirole treatment on reward learning was not 
observed after infusion of this agonist into either of the three striatal regions, suggesting that 
these effects were driven by DA D2 receptor stimulation elsewhere in the brain, for example 
in the prefrontal cortex or through D2 autoreceptors on midbrain DA neurons. Stimulation of 
these latter receptors would inhibit activity of DA neurons, thereby decreasing DA release, 
and thus preventing a peak in DA release during positive reward prediction16,41, which 
may logically explain the observed decrease in positive feedback learning after systemic 
quinpirole injection. Furthermore, the effects of systemic treatment with DA D2 receptor-
acting drugs on the response latency and trials completed were also seen after infusion of 
these drugs into the different parts of the striatum. However, this was not the case for the 
effects seen after systemic treatment with DA D1 receptor-acting drugs, suggesting that the 
effects of these drugs on these motivational and motoric task parameters were the result of 
the combined effects of these drugs in the striatal subregions, or that the effects arose from 
other dopaminoreceptive brain areas, like the prefrontal cortex or amygdala.
 The differential effects of the DA D1 and D2 receptor agonists in the VS on reward 
versus punishment learning suggest that these forms of learning are segregated in the VS DA 
system, in that they are mediated by different cell types. Punishment learning, theoretically 
guided by negative prediction errors coded by DA neurons, seems only dependent on the 
VS DA D2 receptor, while reward learning, as guided by positive DAergic prediction errors, is 
dependent on the VS DA D1 receptor. This finding is in line with theoretical neurocomputational 
models of the basal ganglia that implicates striatal DA D1 receptor-expressing neurons 
(through the “direct Go-pathway”) in reward sensitivity, and striatal D2 receptor-expressing 
neurons (through the “indirect NoGo-pathway”) in punishment sensitivity26-28,41,42. Our lab 
recently showed that an abundance of DA in the brain, induced by systemic treatment with 
dopaminomimetics or by chemogenetic activation of VTA neurons projecting to the VS, 

Table 1 Effects of DA (ant)agonists on the computational model (black) and motivational and motoric 
task parameters (gray).

4. Discussion
4.1 Computational model
In this study, we have tested the effects of selective DA D1 and D2 receptor antagonists and 
agonists on serial probabilistic reversal learning, and used a computational reinforcement 
learning model to assess how these drugs impacted on subcomponents of value-based 
learning and decision making. We used a model that we have previously shown to be 
superior in explaining the rats’ choice behavior during this task32, which describes the 
behavior of the rats in terms of four parameters. The first two model parameters are reward 
and punishment learning rates α+ and α-, which indicate the extent to which a single reward 
delivery or omission impacts the value representation of the chosen lever. As such, a 
learning rate close to 1 indicates that a single trial outcome strongly affects the value of 
the chosen lever, while a learning rate close to 0 indicates that the value is barely updated 
on the basis of feedback (and the value representation is thus based on a longer history of 
outcomes). Stickiness parameter π indicates the amount of perseveration of the rats, and 
reflects the extent to which the animals have a preference for the lastly chosen lever; a 
positive value of π is indicative of perseveration on the same lever, a negative value of π is 
indicative of alternation between levers, whereas a π value close to 0 indicates that the lastly 
chosen lever does not affect the choice in the next trial (and hence choices are based on a 
comparison of the value estimates of the levers). Finally, stochasticity factor β reflects the 
extent to which the choices of the animals are driven by value; a high value of β indicates 
that the animals deterministically choose the highest-valued lever, while a β value close to 0 
indicates sampling of both options (i.e., random choice). β is sometimes referred to as the 
explore/exploit parameter, where a high value of β favors exploitation of knowledge about 
the lever’s values, whereas a low value of β favors exploration of both choice options.
 This computational modeling approach informs about the strategy the animals use 
to perform the task, and demonstrates to what extent animals use rewarding and punishing 
feedback from the task to make choices. This analysis provides in-depth insights into the 
behavior of the animals besides the classical measures of performance, and sometimes 
reveals subtle changes in behavior that would not have been detected otherwise (e.g., the 
effects on reward learning in Figure 3b and 4b).

Systemic VS DLS DMS

DA D1 

antagonist

SCH23390 ↓↓ Trials completed 

↑   Response latency

DA D1 

agonist

SKF82958 ↓   Reward learning 

↓↓ Trials completed 

↑↑ Response latency

↓   Reward learning

DA D2 

antagonist

Raclopride

↑↑ Response latency ↑↑ Response latency

↓ Trials completed 

↑ Response latency

DA D2 

agonist

Quinpirole ↓   Reward learning 

↓↓ Punishment learning 

↓   Stochasticity 

↓↓ Trials completed 

↑↑ Response latency

↓↓ Punishment learning 

↓↓ Stochasticity 

↓↓ Trials completed 

↑↑ Response latency

↓   Stochasticity 

↑ Response latency

↓   Trials completed 

↑   Response latency
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evokes a mental state that is characterized by insensitivity to loss and punishment18. Here, 
we provide evidence that this phenomenon is driven by overstimulation of VS D2 receptors 
and the subsequent impairment in adapting to negative feedback. Indeed, the learning 
effects we observed after systemic injection or intra-VS infusion of D1 and D2 agonists 
were numerically larger for the D2 agonist than for the D1 agonist, which may explain why 
overstimulation of the VS with DA itself affects punishment learning, rather than reward 
learning.
 The systemic effects of D2 receptor agonist quinpirole on choice stochasticity 
factor β were driven by action of this drug in the VS and DLS, but not the DMS. β is sometimes 
referred to as the explore/exploit parameter, and a decrease in its value indicates that the 
choices of the animals were more explorative by nature than under baseline conditions, thus 
being less driven by the value of the two levers. As such, the amount of exploration versus 
exploitation is a descriptor of behavior that is related to value-based decision making, rather 
than value-based learning. Although relatively little is known about the neural basis of this 
aspect of decision making43, it has been shown that in humans, fMRI bold responses in 
the striatum (as well as in the ventromedial prefrontal cortex) are related to exploitative 
decisions (i.e., choosing the highest valued option)44. Furthermore, it has recently been 
shown that the balance between exploration and exploitation in human subjects is related 
to two genes linked to DAergic function45. That said, although the observed increase in the 
amount of exploratory choices is indicative of changes in value-based decision making, 
it must be noted that a decrease in β could also reflect a general disruption of behavior, 
thereby inducing more random choice behavior, for example because of a memory deficit 
or attentional impairment. However, this is not very likely given the absence of effects of 
quinpirole treatment on the stickiness parameter, as well as the absence of effects on 
reward learning after VS infusion of quinpirole and the absence of any changes in learning 
after DLS infusion of quinpirole.
 It is interesting to note that treatment with DA receptor agonists affected learning 
rates by reducing these (i.e., impair learning). This indicates that DA operates on an optimal 
level, and that upward deviations from this optimum can evoke learning impairments. 
This is somewhat conflicting with the aforementioned model that states that D1 receptor 
activation would enhance reward sensitivity through activation of the “direct Go-pathway” in 
the striatum and D2 receptor blockade would enhance punishment sensitivity through the 
“indirect NoGo-pathway”42. One possibility is that the agonist occupies the DA receptors, 
thereby not allowing D1 or D2 receptor-expressing cells to detect transient changes in DA 
release during reward prediction errors.
 Considering the role of DA in reward-based learning, it is surprising that no changes 
in performance or learning rates were observed after treatment with either the DA D1 
receptor antagonist SCH23390 or the D2 receptor antagonist raclopride, even though we 
used concentrations with which we have observed behavioral effects in the past36,37. It could 
reasonably be argued that higher concentrations than the ones we have used may distort 
learning, but the animals became disengaged in the task after treatment with concentrations 
higher than 0.04 mg/kg SCH23390 or 0.2 mg/kg raclopride, thereby not completing enough 
trials to draw reliable conclusions about task performance (data not shown). Interestingly, 
changes in learning and decision-making have been observed after local micro-infusions of 
DA D1 and D2 antagonist into the brain, suggesting that blockade of DA receptors, both in the 
striatum46 and the prefrontal cortex17,47, has the potential to disrupt behavior in certain tasks. 
Thus, systemic treatment with DA antagonists might have affected motivation or motor 
behavior before it affected task performance, thereby not allowing the detection of a learning 
deficit. That said, given that micro-infusion of the DA D1 and D2 receptor antagonists in 
the striatum also did not affect the computational model parameters suggests that activity 
of an isolated class of DA receptors is not essential for reversal learning, for example 
because its function can partially be taken over by the other class of receptors. Importantly, 

the aforementioned effects of DA antagonists in the striatum on decision making46 were 
observed in a task that entailed risky choice, and may rely on other cognitive processes than 
the task used in our study.

4.4 Concluding remarks
Value-based decision making is a fundamental process for an organism to thrive and 
survive in a changeable environment, and DA has been widely implicated in this process. 
Although claims have been made about the relative contributions of different brain regions 
and subclasses of DA receptors to reinforcement learning, it has never been systematically 
studied and dissected into its core processes. Here, we used a pharmacological and 
computational approach to investigate how the two main subclasses of DA receptors, the D1 
and D2 receptors, contribute to four important components of value-based decision making: 
reward learning, punishment learning, choice perseveration, and choice stochasticity. Our 
research confirms previous notions of the involvement of the DA D2 receptor in avoidance 
behavior and the D1 receptor in approach behavior, and show that this may be driven by 
mediating fundamental value-based learning processes. Moreover, we show that treatment 
with DA receptor agonists more strongly affects behavior in the task than antagonists do, 
suggesting that activation of DA receptors disrupts the computational mechanisms driving 
reversal learning. Further experimental investigations will be needed to decipher the relative 
contributions of these receptors to value-based decision making in other brain regions, 
including the prefrontal cortex and amygdala, and study which downstream circuits process 
the learning signals that eventually establish complex choice behavior.
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Reinforcement learning, the process by which an organism flexibly adapts 
behavior in response to reward and punishment, is vital for the proper 
execution of everyday behaviors, and its dysfunction has been implicated in 
a wide variety of mental disorders. Here, we use computational trial-by-trial 
analysis of data of female rats performing a probabilistic reward learning 
task and demonstrate that core computational processes underlying 
value-based decision making fluctuate across the estrous cycle, providing 
a neuroendocrine substrate by which gonadal hormones may influence 
adaptive behavior.

Introduction
Reinforcement learning is an essential mechanism for organisms to adapt to a dynamic 
environment, by allowing flexible alterations in behavior in response to positive and 
negative feedback, for example during foraging and social encounters1. As such, deficits 
in reinforcement learning have been implicated in several psychiatric conditions, including 
addiction and schizophrenia2. Given the large gender differences in the prevalence of mental 
disorders, and the existence of cyclic changes in the severity of schizophrenia and sensitivity 
to drugs in women3, we sought to determine how the estrous cycle of females affects the 
computational processes that underlie reinforcement learning. To this aim, we tested a 
cohort of female rats on a probabilistic reversal learning paradigm4,5, used computational 
modeling to extract the subcomponents of value-based decision making, and assessed how 
these components were affected by the estrous cycle. 

Methods
Animals
Female, nulliparous Long-Evans rats (bred in-house; background Rj:Orl, Janvier labs, France; 
n = 30) weighing 180-220 gram were used for the experiment. Animals were tested for 10 
consecutive days, to ensure that we had at least one measurement of every cycle stage 
per animal. Eventually, 5 animals had to be excluded because the cycle could not reliably 
be estimated or not all stages of the cycle were captured due to unreliable vaginal smears, 
leaving a final group of n = 25. Animals were socially housed in groups of 2-4 and kept on a 
reversed day/night cycle (lights on at 8AM), and behavioral experiments took place between 
9AM and 1PM. During the training phase of the experiment, animals were kept on a food 
restriction regimen of 5 gram chow per 100 gram body weight, and during the 10 experimental 
days the animals were food restricted for 16 hours prior to the behavioral task. For the male 
group of animals (n = 18), that is included for comparison, Long-Evans rats (bred in-house; 
background Rj:Orl, Janvier labs, France) of roughly the same age, weighing 310-390 gram, 
were used. Animals had ad libitum access to water, except during behavioral experiments. 
The experiments were carried out in accordance with European Union guidelines (2010/63/
EU), and approved by the Animal Welfare Body of Utrecht University and the Dutch Central 
Animal Testing Committee.

Behavioral task
The probabilistic reversal learning task (Figure 1a) took place in operant conditioning 
chambers (Med Associates Inc., USA) equipped with a food receptacle (with infra-red entry 
detection) flanked by two retractable levers and two cue lights, a house light and an auditory 
tone generator. One lever was randomly assigned as the high-probability lever, responding 
on which was reinforced (i.e. delivery of a sucrose pellet) with an 80% probability and not 
reinforced (i.e. a time-out) with a 20% probability. The other lever was assigned as the low-
probability lever, responding on which had a 20% chance of being reinforced. Every single 
response on the high-probability and low-probability lever was reinforced with a 80% or 20% 

probability, respectively, irrespective of the outcome of the previous trials.
 The session lasted for 60 minutes, and animals were constrained in the number of 
trials they could make only by the length of the session (maximum ~600 trials per session 
possible). A trial commenced by the illumination of the house light, and the presentation of 
the two levers into the operant cage. After a lever press by the animal, the levers retracted and 
the house light was turned off. For reinforced trials, a 45mg sucrose pellet (5TUL, TestDiet, 
USA) was delivered into the food port, and both cue lights that flanked the food receptacle 
were illuminated, and an auditory tone was played for 0.5s. A new trial commenced directly 
when the animal entered the food port (detected by the infra-red movement detector); this 
was signaled to the animal by extinction of the cue lights, illumination of the house light and 
presentation of the two levers. On non-reinforced trials, no additional cues were presented, 
leaving the animals in the dark during a 10s period.
 Every time the animal made 8 consecutive responses on the high-probability lever, 
a reversal in reinforcement contingencies occurred, so that the high-probability and low-
probability levers switched. This reversal was not signaled to the animal, so it had to infer 
this contingency switch from the outcomes of the trials.
 The software automatically registered the responses and response times of the 
animals, as well as the outcome of the trial (reinforced or not), and the position of the high-
probability lever.

Training
Animals first received lever press training, during which both levers were continuously 
presented, and a lever press was reinforced under a fixed ratio-1 schedule. When all animals 
made more than 50 lever presses in a session, the group progressed to the next phase of lever 
press training, in which randomly the left lever, the right lever, or both levers were presented 
to the animals, and pressing either lever was reinforced under a fixed ratio-1 schedule. In 
this phase of training, levers retracted after a response, and animals were subjected to the 
same sequence of events as during a reinforced trial in the probabilistic reversal learning 
task. When all animals made at least 100 responses in a session during this phase, the 
group received 6 training sessions of the probabilistic reversal learning task, before the 
experimental phase began (both females and males received these 6 training sessions in 
the final stage).

Estrous cycle determination
To determine the circulating levels of female sex hormones throughout the estrous cycle, 
vaginal smears were obtained for all test days between 11AM and 1PM, 1-2h after each test. 
Vaginal smears were collected by inserting the head of a sterile plastic smear loop (1µL; 
VWR, USA) and gently swabbing the vaginal wall. The collected cells were transferred to 
a drop of water on a glass microscope slide, air-dried and stained with 5% Giemsa (Sigma-
Aldrich, The Netherlands) dissolved in water. Microscopic evaluation of the cells present in 
the vaginal smears was used to determine the phase of the estrous cycle6,7 (Figure 1b). This 
was performed by a trained observer who was blind to smears from previous days and the 
behavioral data, and the following four parameters were estimated: the relative amount of 
cells present (on a scale from 1 to 5), and the percentage of nucleated cells, anucleated cells 
and leukocytes. Based on these four parameters and taking into account all 10 days, smears 
were assigned as proestrus, estrus or metestrus-diestrus, according to references 6 and 7. In 
brief; smears containing predominantly nucleated cells were assigned as proestrus, smears 
containing predominantly anucleated cells were assigned as estrus and smears containing 
leukocytes were assigned as metestrus-diestrus. Smears containing a combination of cells 
indicating a transition between phases were interpreted based on smears from neighboring 
days and references 6 and 7. Females that did not show a regular cycle over the course 
of 10 days were excluded from the analysis. If a single smear was unreliable for a given 
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day, but smears of neighboring days showed a predictable pattern coherent with a regular 
estrous cycle, the phase of the missing day was estimated; if not, that particular day was 
not included in the analysis.

Reinforcement learning model
The trial-by-trial data of every individual session was fit to a reinforcement learning model, 
which was a modification of the classic Rescorla-Wagner model8, which assumes that the 
animals dynamically track the value of the outcome of responding on each of the two levers 
by incorporating positive (reward delivery) and negative (reward omission) feedback (Figure 
1c,d). When learning from feedback is high (α → 1), these lever values are strongly dependent 
on the outcome of the last trial, but when learning is low (α → 0), lever values are based on 
an extended history of trials (thus the impact of a single reward delivery or reward omission 
on lever value is small). The model further incorporates the animals’ preference for the lastly 
chosen lever, independent of lever values, which is captured by perseveration parameter π. 
Moreover, it incorporates stochastic choice, to distinguish between deterministic choice of 
the highest valued lever (β → ∞) and a more exploratory sampling approach (β → 0). Random 
effects model selection indicated that this modified Rescorla-Wagner model was able to 
predict the highest amount of observed choices compared to a set of other reinforcement 
learning models that we tested, including the classic Rescorla-Wagner model8, a Pearce-
Hall-Rescorla-Wagner hybrid model9, and a win-stay, lose-switch model10 (Supplementary 
Table 1).
 The expected reward values of both levers, Qleft and Qright, ranged from 0 (pressing 
the lever is never reinforced) to 1 (pressing the lever is always reinforced). Both lever values 
were initiated at a value of 0.5, and the value of the chosen lever Qchosen was updated after 
every trial t based on the outcome of that trial:
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Here, α+ is the reward learning rate (learning from positive feedback), and α- is the punishment 
learning rate (learning from negative feedback), which range from 0 (no learning) to 1 (lever 
value completely determined by last outcome). δt-1 represents the reward prediction error 
after the last trial t-1, so that:
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Note that reward prediction error δ is negative for non-reinforced trials (outcome is lower 
than expected) and positive for reinforced trials (outcome is higher than expected). The 
value of the unchosen lever was not updated. Separate learning rates were used for learning 
from positive feedback (i.e. δ > 0; rewarded trials) versus negative feedback (i.e. δ < 0; time-
out trials), so that changes in reward or punishment learning could be discerned in isolation
 At the start of each trial, lever values Qleft and Qright were converted to action 
probabilities using a Softmax function, so that the probability of choosing the right lever 
pright,t at trial t was given by the function:
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Here, β is the inverse temperature of the Softmax function, which is a measure for the 
extent to which the animal consistently chooses the highest valued lever (β → ∞) or that it 
chooses more randomly (β → 0). Parameter π is a stickiness parameter, which adds a certain 
amount of the value of π to the value estimate of the lastly chosen lever. In this case, positive 
values of π indicate a preference for the lastly chosen lever, negative values of π indicate a 
preference for the lastly unchosen lever, and π approaching 0 indicates that the side of the 
lastly chosen lever does not affect the next lever choice. 𝜙 is a boolean that was attributed 
the value 1 if that lever was chosen in the last trial (thus an amount of the value of π will be 
added to the value function), and 0 if that lever was not chosen in the last trial.
 To obtain reliable model parameter estimates on a population level, we used 
maximum a posteriori estimation. In brief, we applied a prior distribution over the parameter 
values, and considered any new evidence from the animal’s choice behavior to determine a 
posterior probability using Bayes’ rule. These posterior probabilities were marginalized to 
get a point estimate of each session’s best-fit parameter values. The used priors were: for α+ 

and α- betapdf(1.5, 1.5); for π normpdf(0.5, 0.5); for β normpdf(2, 2).
 All computational analyses were performed with Matlab R2014a (MathWorks Inc., 
USA).

Statistics
Statistical tests were performed in GraphPad Prism 6.0 (GraphPad Inc., USA). On all outcome 
parameters, a one-way repeated measures analysis of variance (one-way RM ANOVA) was 
performed, with estrous phase as a within-subjects repeated measures factor. This test was 
considered significant if P < 0.05, after which post-hoc Fisher’s tests were performed. When 
data of more than one test per estrous phase was obtained (because data was collected 
from more than one cycle and/or animals were in a certain phase of the estrous cycle 
for more than one day), the outcome parameter values were averaged for these days. No 
statistical comparisons were made between males and females because the two groups 
were not tested in parallel and therefore equal testing conditions could not be ensured. In all 
graphs: **** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05, ns not significant.

Results
We observed a significant effect of estrous cycle on the total number of trials that the 
animals made during a session (Figure 1e). Animals that were in the estrus stage of the 
cycle made the lowest number of trials, and animals in the metestrus/diestrus stage the 
highest number of trials.
 Performance in the task, measured as the total number of reversals that the 
animals achieved, revealed no significant differences between the three stages (Figure 1f). 
However, the total number of reversals is a compound measure for performance in the task, 
that does not necessarily inform about the underlying component processes. To gain insight 
into whether these underlying processes were modulated by the cycle, we fit the trial-by-trial 
data in the session to a computational reinforcement learning model11, and used maximum 
a posteriori estimation12 to determine the parameter values that best described the behavior 
of the animals (Figure 1d). After estimating the value of the four model parameters for each 
session, and comparing these between the different stages of the cycle (Figure 1g), we 
observed a significant decrease in reward learning parameter α+ during the proestrus stage, 
indicative of a lower impact of positive feedback (i.e., reinforcement) on behavior. We further 
found that the estimate of explore/exploit parameter β was significantly reduced during the 
estrus stage. No significant changes were observed on the value estimates of punishment 
learning parameter α- and perseveration parameter π. We replicated these findings by 
fitting the data to a less complex model that only includes α+, α- and β as free parameters 
(Supplementary Figure 1). Overall, the value estimates of the parameters in female animals 
were roughly similar to those observed in males (Figure 1g), except that male animals made 
more trials in the task (Figure 1e).
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Discussion
Our computational analyses reveal distinct changes in the processes underlying value-based 
decision making across the rat estrous cycle. The observed decrease in reward learning 
parameter α+ during the proestrus stage is indicative of a lower impact of positive feedback 
(i.e., reinforcement) on behavior. This stage of the cycle is characterized by peak levels of 
the sex hormones progesterone and estradiol, and thus suggests a direct effect of gonadal 
steroids on reward processing, especially since reward learning was higher in the estrus 
stage of the cycle, when circulating hormone levels decline. This decreased focus on recent 
reward might also explain the reduction in trials completed, possibly reflecting attenuated 
motivation to obtain food reward (Supplementary Figure 2). However, the observed effect on 
motivation may also be the result of cyclic changes in appetite13. 
 The reduction in the value estimate of explore/exploit parameter β during estrus 
indicates that sexually receptive females chose more stochastically (i.e., shifting from 
exploitation to exploration of the response options) than during the non-receptive stages of 
the cycle, perhaps reflecting a general increase in exploratory behavior. At the same time, 
this increase in exploration may have resulted in reduced task engagement, leading to a 
decrease in the number of trials completed (Supplementary Figure 2). Whether such cyclic 
changes in exploration have some evolutionary advantage, for example by promoting search 
for a sexual partner, remains to be investigated.
 Researchers are increasingly encouraged to include female animals in preclinical 
experiments, with the aim to increase the translational value of animal research. In this 
regard, our data provide further insight into the complexity of value-based decision 
making and its sex-specific modulation. Importantly, behavioral data from intact female 
animals should be properly controlled for the estrous cycle, since many behavioral tasks 
in neuroscience involve (food) reward, and are therefore subject to changes in value-based 
learning, motivation and appetite. 
 In sum, we provide direct evidence that reward learning, exploration and motivation, 
but not punishment learning and perseveration, fluctuate during the estrous cycle in female 
rats. Although cyclic changes in value-based decision making have been observed before, 
which computational components underlie these changes had not yet been elucidated. It 
is well known that gonadal steroids have widespread effects on the brain, including the 
mesocorticolimbic dopamine system14, which is an important hub for value-based learning5. 
It is therefore likely that estradiol and progesterone affect reinforcement learning through 
corticolimbic mechanisms, to promote adaptive survival-directed behavior in females.
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Figure 1
a. Probabilistic reversal learning setup. Hungry female animals could respond on two levers, one of 

which delivered sucrose reward with a high probability (80%, high-probability lever), and the other 
lever with a low probability (20%, low-probability lever). Every time the animal made eight consecutive 
responses on the high-probability lever, a reversal in reinforcement contingencies occurred, so that the 
previously low-probability lever became the high-probability lever, and vice versa. In this way, animals 
had to track the outcome of responding on each of the two levers over a series of trials and based 
hereon make a choice between them.

b. Example cytological images of samples from vaginal smears during the three stages of the estrous 
cycle.

c. Computational model.
d. Trial-to-trial data was fit to the computational model, and best-fit parameters were estimated.
e. Total trials completed by the female animals (n = 25) in the 60-minute session was significantly 

affected by the estrous cycle (Repeated measures ANOVA, F2,48 = 21.22, P < 0.0001). Post-hoc tests: 
**** P < 0.0001, *** P = 0.0002, * P = 0.0188. Male data (n = 18) is shown for illustrative purposes; 
these data were not included in the statistical analyses.

f. The total number of reversals was not affected by the cycle (ANOVA, F2,48 = 0.48, P = 0.6209).
g. Best-fit computational model parameters per estrous cycle stage. Reward learning: ANOVA F2,48 = 

3.995, P = 0.0248; post-hoc tests met/diestrus (M/D) vs proestrus (P), P = 0.0198, M/D vs estrus (E), 
P = 0.9425, P vs E, P = 0.0166. Punishment learning: ANOVA F2,48 = 1.637, P = 0.2052. Perseveration: 
ANOVA F2,48 = 0.1349, P = 0.8741. Explore/exploit: ANOVA F2,48 = 5.201, P = 0.0090; post-hoc tests M/D 
vs P, P = 0.4444, M/D vs E, P = 0.0243, P vs E, P = 0.0033. Male data is shown for illustrative purposes.
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DATA AVAILABILITY
All data is publicly available at github.com/jeroenphv/EstrousCycle.
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SUPPLEMENTARY FIGURE 1

Fit of the data to a less complex model that does not include perseveration parameter π replicated 
the main findings of this paper. A significant reduction in reward learning parameter α+ was observed 
during proestrus, and a significant reduction in explore/exploit parameter β was observed during 
estrus. 

Reward learning
 One-way repeated measures ANOVA: F2,48 = 5.128, P = 0.0096 **
 Post-hoc M/D vs P: t48 = 2.747, P = 0.0084 **
 Post-hoc M/D vs E: t48 = 0.052, P = 0.9589
 Post-hoc P vs E: t48 = 2.799, P = 0.0074 **

Punishment learning
 One-way repeated measures ANOVA: F2,48 = 2.222, P = 0.1194

Explore/exploit
 One-way repeated measures ANOVA: F2,48 = 4.789, P = 0.0127 *
 Post-hoc M/D vs P: t48 = 0.261, P = 0.7953
 Post-hoc M/D vs E: t48 = 2.801, P = 0.0073 **
 Post-hoc P vs E: t48 = 2.540, P = 0.0144 *
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SUPPLEMENTARY TABLE 1

Model comparisons, based on n = 300 sessions (10 sessions × 30 rats; total 40,934 trials).

Parameters: α, general Rescorla-Wagner learning rate; α+, Rescorla-Wagner reward learning rate; α-, 
Rescorla-Wagner punishment learning rate; π, stickiness or perseveration parameter; η, Pearce-Hall 
associability factor; β, choice stochasticity parameter (i.e., Softmax inverse temperature or explore/
exploit parameter).

Abbreviations: LL, log-likelihood; AIC, Akaike Information Criterion; XP, exceedance probability; PXP, 
protected exceedance probability.

SUPPLEMENTARY FIGURE 2

The total trials completed in the task positively correlated with the value estimates of reward learning 
parameter α+, punishment learning parameter α+ and explore/exploit β, but not with perseveration 
parameter π. n = 300 sessions from 30 rats. R2 and P represent the variance explained and statistical 
significance of the linear regression analysis.
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Model Free parameters Aggregate LL Aggregate AIC

# of sessions 
best described 

by model XP PXP

1 Rescorla-Wagner 1 α, β -17800.7 36801.3 42 of 300 0 0

2 Rescorla-Wagner 2 α+, α-, β -17289.9 36379.7 46 of 300 0 0

3 Rescorla-Wagner 3 α+, α-, π, β -16598.9 35597.8 126 of 300 1 1

4 Pearce-Hall η, β -18581.3 38362.5 37 of 300 0 0

5
Rescorla-Wagner-

Pearce-Hall hybrid
α, η, β -17874.9 37549.9 36 of 300 0 0

6 Win-stay, lose-switch β -22124.8 44849.7 12 of 300 0 0

7 Random choice model - -28373.3 56746.6 1 of 300 0 0
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Being able to limit the pursuit of reward in order to prevent negative 
consequences is an important expression of behavioral inhibition. 
Everyday examples of an inability to exert such control over behavior are 
the overconsumption of food and drugs of abuse, which are important 
factors in the development of obesity and addiction, respectively. Here, we 
use a behavioral task that assesses the ability of rats to exert behavioral 
restraint at the mere sight of palatable food during the presentation of 
an audiovisual threat cue to investigate the corticolimbic underpinnings 
of behavioral inhibition. We demonstrate a prominent role for the medial 
prefrontal cortex in the exertion of control over behavior under threat of 
punishment. Moreover, task engagement relies on function of the ventral 
striatum, whereas the basolateral amygdala mediates processing of a threat 
cue. Together, these data show that inhibition of reward pursuit requires the 
coordinated action of a network of corticolimbic structures.

Introduction
In a world where food is abundantly available, it can be hard to resist the temptation to eat 
highly palatable, yet unhealthy foods, while being aware of the negative health consequences 
this may have. As such, a healthy lifestyle requires one to control the urge to eat tasty foods. 
This can be especially challenging during dieting, when the body is in a negative energy 
state, and food cues are more salient than usual1. Accordingly, reduced behavioral inhibition 
has shown to be an important factor in the development and maintenance of overweight in 
children2 and adults3.
 Besides its role in eating and dieting, deficiencies in inhibitory control have been 
implicated in a wide variety of maladaptive behaviors, ranging from failures in everyday life, 
like an inability to attain goals, to mental disorders, like substance addiction, attention-deficit/
hyperactivity disorder (ADHD) and obsessive-compulsive disorder4-6. Behavioral inhibition is 
generally assumed to be a multifaceted phenomenon, whereby a distinction can be made 
between control over actions and control over choices and decisions6,7. These processes 
have been widely studied using laboratory tasks of impulsivity, which have tremendously 
progressed our understanding of the neural circuits involved in behavioral control6-8. Indeed, 
the distinction between choices, decision and actions is theoretically and mechanistically 
useful, but many everyday cases in which control over behavior is compromised consists 
of a combination of these processes. For example, an inability to resist a tasty dessert 
during dieting can sometimes be initiated by a thoughtless walk to the fridge, but during 
consumption, many decision moments take place in which one can reflect on his or her 
behavior and consider the consequences of continued eating in the short and long term. 
 In an attempt to capture behavioral inhibition in an ecologically valid fashion, we 
have developed a behavioral task in rats that measures the ability of the animals to inhibit the 
urge to consume a highly palatable food reward when a stimulus is presented that signals 
that sugar retrieval will be punished with a mild electric foot shock. Such a threat puts the 
animals in a conflict situation, in which a natural approach response to food competes with 
the natural avoidance response to danger. As such, our task assesses inhibitory control over 
an innately present desire. 
 Here, we investigated the corticolimbic substrates of behavioral control. Adaptive 
inhibition of behavior is thought to rely on functional activity in a network of regions including 
the prefrontal cortex (PFC), ventral striatum and amygdala, that has been implicated in the 
processing of emotionally relevant cues, the selection of appropriate behavioral strategies 
and the transmission of such strategies into goal-directed behavior8-11. Therefore, we tested 

how pharmacological inactivation of these brain structures altered behavior in this task. We 
hypothesized that inactivation of these structures would lead to marked, but behaviorally 
dissociable impairments in task performance.

Materials and methods
Animals
A total of 121 male Long-Evans rats (Rj:Orl, Janvier labs, France), weighing 250-300g at the 
start of the experiment, were used for this study. Animals were kept on a 12h/12h reversed 
day-night cycle (lights off at 8 A.M.). Animals were socially housed before surgery, but singly 
after surgery to prevent damage to the head implant. Experimental procedures were approved 
by the Animal Ethics Committee of Utrecht University and the Dutch Central Animal Testing 
Committee and they were conducted in agreement with Dutch laws (Wet op de Dierproeven, 
2014) and European guidelines (2010/63/EU).

Surgeries
For placement of the guide cannulas, animals were anaesthetized with an intramuscular 
injection of a mixture of 0.315 mg/kg fentanyl and 10 mg/kg fluanisone (Hypnorm, Janssen 
Pharmaceutica, Belgium), and placed in a stereotaxic apparatus (David Kopf Instruments, 
United States). An incision was made along the midline of the skull, and two small craniotomies 
were made bilaterally above the brain region of interest. The following coordinates were used 
for placement of the guide cannulas:

Prelimbic ctx  AP +3.2 mm  ML ±0.6 mm  DV -2.6 mm from skull
Infralimbic ctx  AP +3.2 mm  ML ±0.6 mm  DV -4.3 mm from skull
Medial orbitofrontal ctx AP +4.4 mm  ML ±0.6 mm  DV -3.8 mm from skull
Anterior cingulate ctx AP +2.0 mm  ML ±0.6 mm  DV -2.2 mm from skull
Lateral orbitofrontal ctx AP +3.6 mm  ML ±2.6 mm  DV -3.7 mm from skull under 5° angle
Basolateral amygdala AP -3.0 mm  ML ±5.0 mm  DV -7.5 mm from skull
Ventral striatum (core) AP +1.2 mm  ML ±2.1 mm  DV -6.3 mm from skull under 5° angle
Ventral striatum (shell) AP +1.2 mm ML ±2.7 mm  DV -7.0 mm from skull under 10° angle
Dorsomedial striatum  AP +1.2 mm  ML ±2.3 mm  DV -4.1 mm from skull under 5° angle
Dorsolateral striatum  AP +1.2 mm  ML ±3.4 mm  DV -4.1 mm from skull
Olfactory cortex  AP +3.6 mm  ML ±2.2 mm  DV -4.4 mm from skull

For the brain regions of the medial PFC (prelimbic, infralimbic, medial orbitofrontal, and 
anterior cingulate cortices), 23G bilateral guide cannulas were used that had a double 
protrusion, spaced 1.2 mm apart (Plastics One, United States). For the other regions (lateral 
orbitofrontal cortex, basolateral amygdala, olfactory cortex, striatum), two 23G single guide 
cannulas (Plastics One, United States) were placed bilaterally. 
 Guide cannulas were lowered to the desired coordinates, secured with screws, 
dental glue (C&B Metabond, Parkell Prod Inc., United States) and dental cement, and the 
skin around the cemented cap was sutured. Dummy cannulas were placed inside the guide 
cannulas. Post-surgery, the animals were injected with 5 mg/kg carprofen for pain relief (1x/
day, for 3 days, subcutaneously) and saline for rehydration (10 ml once, subcutaneously), and 
they were allowed to recover for 7 days before behavioral training continued.

Experimental procedures
Behavioral testing took place during the dark phase of the reversed 12h/12h day-night 
cycle. The task was conducted in operant conditioning chambers (31 x 24 x 21 cm; MedPC, 
Med Associates Inc., United States), placed in sound-attenuating cubicles. The chamber 
contained a shock grid floor, a 28V/100mA houselight, and in the right wall a food port with 
infrared movement detection, two 28V/100mA cue lights (flanking the food port), and a tone 
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generator (4500 Hz). A pellet dispenser delivered 45 mg sucrose pellets into the food port 
(SP; 5TUL; TestDiet, United States). Operant chambers were controlled by MedPC software 
(Version IV; Med Associates Inc., United States). Animals were kept on food restriction 
during the training phase (~4 gram chow per 100 gram body weight) and always had ad 
libitum access to water in their home cage. After successful training, animals received ad 
libitum chow. However, before behavioral testing, animals were food restricted for ~3 hours.

Task
A session consisted of 60 trials of 40 seconds each. At the start of every trial, one sucrose 
pellet was delivered into the food port, regardless of trial type (Fig. 1a). The trials were 
pseudorandomly distributed so that 30 trials were assigned as ‘no-stimulus trials’, and the 
remaining 30 trials were assigned as ‘stimulus trials’. This order of trials was the same for 
all the animals, so that a larger cohort of animals could be tested simultaneously in the 
same room, without leakage of stimulus sound between the boxes. The house light was 
illuminated for the entire length of the session.
 All trials started with the delivery of a sucrose pellet into the food port. During no-
stimulus trials, the animals were allowed to enter the food port (i.e., consume the pellet) 
directly, which was detected by disruption of the infrared photobeam in the port. During 
stimulus trials, pellet delivery co-incided with the onset of a continuous tone and cue light 
stimulus, which lasted for 12 seconds, functioning as a threat signal to the animal. That is, 
the tone and light cue indicated that the animals had to wait with food port entry (and pellet 
consumption) until stimulus termination. If the animal managed to wait for 12 seconds, it 
could freely enter the food port and consume the sugar without scheduled consequences; 
this was called a ‘success’ trial. Food port entry during the stimulus, however, terminated the 
stimulus and delivered a 0.3 second foot shock to the animal; this was termed a ‘shock’ trial. 
The intensity of this foot shock was determined during the training phase for each animal 
individually, but it was kept constant for each animal during the experiment (median foot 
shock intensity 0.50 mA; see also Fig. 1a).
 During the task, MedPC software recorded, for each trial, the type of trial (stimulus 
or no-stimulus), the response of the animal (pellet retrieved or not, and for stimulus trials 
if the trial was punished or not), the timestamp of the pellet drop, and the timestamp of 
the response of the animal. Since latencies of pellet retrieval were usually not normally 
distributed within a session, the median latency for each trial type per session, per animal 
was used in the analysis.
 When the animal did not enter the food port (and consume the pellet) during a trial 
(i.e., within 40 seconds), it was regarded as an omission, and this prevented further pellet 
delivery (and hence pellet accumulation in the food port) until the next food port entry. To 
control for these omissions, we computed a shock index, which is the number of shock 
trials as a fraction of the number of shock+success trials. In other words, this index is a 
measure for the amount of stimulus trials during which the animal entered the food port 
during stimulus presentation, corrected for the number of omissions, and thus represents a 
measure of (loss of) control over behavior.

Expected phenotypes
Based on the trial outcomes and the speed with which animals retrieve the pellets, different 
behavioral phenotypes can be discerned (Fig. 1b). First, impaired inhibition of behavior, in 
which animals are not able to refrain from taking the sucrose pellet for the entire stimulus 
period, would be characterized by an increase in shock trials, at the expense of the number 
of success trials (Fig. 1b, left panel). Latency of pellet retrieval during shock trials is likely 
to be decreased compared to control conditions, i.e., if animals show reduced control over 
behavior, this may happen earlier in the stimulus period. Behavior during no-stimulus trials 
should be unchanged, and neither should be the latency of pellet retrieval during success 
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Figure 1 
a. Behavioral setup. The task comprised 60 trials in which a sucrose pellet was delivered into a food 
port. In half of the trials, animals could take the pellet directly without any negative consequences (’no-
stimulus trials‘). In the other half of the trials, pellet delivery was accompanied by a 12s audiovisual 
stimulus, that signaled to the animals that they had to wait with entering the food port until stimulus 
termination (’stimulus trials‘). Food port entry during the stimulus was detected by an infra-red movement 
detector and was punished with a 0.3s electric foot shock. Inset shows the individual animals’ foot shock 
intensities (median ± 25th-75th percentile, whiskers extend to minimum and maximum values).  
b, Possible phenotypes after (neural) manipulation. Note that for no-stimulus trials, both options (’Reward 
taken’ and ‘Omitted’) add up to 100%, as well as for the options during the stimulus trials (’Reward taken 
- Success’, ‘Reward taken - Shock’, ‘Omitted’). Dark arrows under graphs represent possible changes in 
latency of pellet retrieval for each trial type.  
c. Quantification of a trial from Supplementary movie 2, demonstrating ‘attract and repel’ behavior 
directed towards and away from the food receptacle during a stimulus trial.
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trials (i.e., the speed of food port entry after stimulus offset).
 Second, when the animal’s capability of retrieving the value of the stimulus is 
compromised, animals would behave as if there was no threat signal presented at all (Fig. 
1b, middle panel). This would lead to a similar behavioral pattern as after loss of control 
over behavior, but with different latency effects. During shock trials, in which the animals 
take the pellet during the stimulus, retrieval latency should be shorter, as animals are less 
able to distinguish between no-stimulus and stimulus trials. Similarly, latency of food port 
entry after stimulus offset, during success trials, is likely to be higher, since animals will not 
successfully retrieve the termination of the threat signal.
 Third, a loss of motivation to obtain reward would increase the amount of omissions, 
both in no-stimulus, as well as in stimulus trials (Fig. 1b, right panel). The number of shock 
trials will likely be low, as it will be easier for the animals to wait with pellet retrieval until after 
stimulus termination. Furthermore, latency until pellet retrieval is likely to be increased in all 
trials. 
 Finally, behavior could be disrupted by a combination of these three phenotypes, 
which could lead to a variety of patterns in trial outcomes and latencies.

Task training
Animals were trained once or twice a day, for 5-7 days per week, starting with magazine 
training, which was the same task as described above except that exclusively no-stimulus 
trials were presented. Thus, 60 sucrose pellets were delivered into the food port with an 
interval of 40 seconds. If the animals made less than 5 omissions in a session, training 
progressed to the final training phase (see Fig. S1), which was the task version described 
above.
 In the first session of the final training phase, foot shock intensity was set to 0.35 
mA. If more than half of the stimulus trials were punished, it was assumed that the intensity 
was too low to induce effective punishment, hence the foot shock intensity of the next 
session was increased with 0.05 or 0.1 mA. Similarly, if an animal made many omissions, it 
was assumed that the foot shock was too intense, and shock intensity was decreased with 
0.05 mA in the next session. After animals reached the criterion of 20 success trials out of 30 
stimulus trials (meaning that the rat waited with pellet retrieval in 2/3 of the stimulus trials), 
foot shock intensity was kept constant for the remainder of the experiment. All animals 
learned the task, so no ‘non-learners’ had to be excluded from the experiment.

Infusions
For the intracranial infusions into the bilateral guide cannulas, double injectors were used 
that protruded 1 mm beyond the end of the guides. For the single guide cannulas, injectors 
were used that protruded ~0.4 mm beyond the end of the guide. Animals were habituated 
to the procedure the day before the experiment, by an infusion of 0.3 μl saline through the 
cannulas. 
 On testing day, animals received an infusion of a cocktail of baclofen (1 nmol; 
Sigma-Aldrich, Netherlands) and muscimol (0.1 nmol; Sigma-Aldrich, Netherlands) dissolved 
in 0.3 μl saline12, or 0.3 μl saline as a control (counterbalanced between days, 24h apart) 
using a syringe pump (Harvard Apparatus, United States) set at an infusion rate of 0.5 μl/
min. After infusion, the injectors were kept in place for an additional 30 seconds to allow 
the drug to properly diffuse into the tissue. After infusion, the dummy cannulas were placed 
back into the guides, and the animals were returned to their home cage for 10-20 minutes, 
before experimental testing commenced.

Free-feeding assay
In the free feeding assay, animals were infused with baclofen/muscimol or saline, and placed 
back into their home cage for 2 hours. Animals had ad libitum access to chow in a feeding 

rack that was attached to the wall of the home cage. Food was weighed at the beginning of 
the experiment and again two hours later. Animals were measured twice, once after infusion 
of baclofen/muscimol and once after infusion of saline (counterbalanced between subjects; 
24h apart).

Tail withdrawal test
The tail withdrawal test (adapted from refs. 13 and 14) took place during the 2-hour free 
feeding assay (which occurred twice; treatment counterbalanced between subjects, see 
above). In this task, the animal was fixated with a towel, and 3-5 cm of the animal’s tail was 
placed in a beaker containing water of 50 (± 1) °C. The test was filmed, and latency until tail 
withdrawal was scored from the movies in a frame-by-frame manner, by a researcher blind to 
the treatment (baclofen/muscimol or saline).

Histological verification
After the behavioral experiments, animals were transcardially perfused with phosphate-
buffered saline followed by 4% paraformaldehyde in phosphate-buffered saline. Brains 
were post-fixed in 4% paraformaldehyde in phosphate-buffered saline for 24 hours at 4°C 
followed by a 30% sucrose solution at 4°C. Next, brains were cut in coronal slices of 50 µm 
using a cryostat. Brain slices were mounted and colored with 5% Giemsa (Sigma-Aldrich, 
The Netherlands) dissolved in distilled water. Infusion sites were histologically verified by a 
researcher blind to the experimental results.

Exclusion criteria
Five animals were excluded based on misplacement of the cannulas: infralimbic cortex, 
1; anterior cingulate cortex, 1; medial orbitofrontal cortex, 1; lateral orbitofrontal cortex, 1; 
dorsomedial striatum, 1. Ten animals died during surgery: dorsomedial striatum, 1; infralimbic 
cortex, 2; anterior cingulate cortex, 1; medial orbitofrontal cortex, 2; lateral orbitofrontal 
cortex, 2; basolateral amygdala, 1; dorsomedial striatum, 1. One animal was excluded from 
the basolateral amygdala group due to blockage of the cannula. Infusions into the ventral 
striatum were initially targeted separately at the nucleus accumbens shell versus core, 
but were later combined into one ventral striatum group, because the areas were difficult 
to histologically distinguish. One animal from this group was excluded because it lost its 
headcap. Data from one animal was removed from the ventral striatum infusion experiment, 
because the pellet dispenser did not work during the saline session.

Code availability
The MedPC script of the task is available at http://www.github.com/jeroenphv.

Statistics
Statistical tests were performed with Prism 6.0 (GraphPad Software Inc., United States). 
Statistical tests were a within-animal (i.e., paired) comparison, in which baclofen/muscimol 
treatment was compared to saline (baseline) treatment. In these experiments, brain region 
was not included as a between-subjects factor, because we expected different behavioral 
phenotypes after inactivation of the different brain regions. In the free-feeding assay and 
tail withdrawal test, a two-way repeated measure analysis of variance (ANOVA) was used, 
with baclofen/muscimol versus saline as a within-subjects repeated measures factor, 
and treatment group (brain area) as a between-subjects factor. In all figures, statistical 
significance is denoted with the following range: # P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001, 
**** P < 0.0001. Extended statistics are presented in the Supplementary statistics table.
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Figure 2: Effects of pharmacological inactivation of the medial PFC on task behavior. Red crosses in the 
coronal brain sections represent the infusion sites in each experiment. Gray lines in shock index graphs 
indicate individual animals. For latency analyses, the median latency per animal per trial type was used. 

* P < 0.05, ** P < 0.01, *** P < 0.001 in paired t-test; see Supplementary statistics table.

Results
Task behavior
All rats learned the task, i.e., they managed to wait to eat the pellet during the stimulus in 
the majority of trials (Supplementary Movie 1 and 2). In ‘success trials’, the rats retrieved 
the pellet quickly after tone offset, with an average latency of ~2.5s (Fig. S2). In ‘shock 
trials’, i.e., trials in which animals retrieved the pellet during the stimulus and hence received 
punishment, latencies of pellet retrieval were usually higher than in no-stimulus trials 
(~5s compared to ~1.5s in no-stimulus trials; Fig. S2), as if the rats managed to control 
their behavior for a fraction of the stimulus period before they reached out for the pellet. 
Interestingly, animals typically exhibited ‘attract and repel’ behavior directed towards and 
away from the food receptacle during behavioral control (Fig. 1c and Supplementary Movie 
1 and 2).

Prefeeding devaluation evokes a loss-of-motivation phenotype
As described in the ‘Materials and methods’, different phenotypes can be discerned on the 
basis of  the trial outcomes and the speed with which animals retrieve the pellet (Fig. 1b). 
As proof-of-principle, we pre-fed the animals with sucrose pellets before the task, to evoke a 
loss-of-motivation phenotype. Indeed, this induced a pattern of effects (Fig. S3) that matched 
expectations (Fig 1b, right panel). That is, the number of omissions increased, animals 
showed increased control over behavior, and there was a trend towards increased latencies 
of pellet retrieval during no-stimulus trials and success trials. No effect was observed on the 
latency of pellet retrieval in shock trials, but note that this latency was only based on data 
from 6 animals after prefeeding, as the other 6 animals never retrieved the pellet during the 
stimulus. 

Medial PFC inactivation impairs inhibition over behavior
To study the involvement of different regions of the corticolimbic system to behavior in our 
task, we pharmacologically inactivated different regions of this system by means of intra-
cranial infusions of the GABA receptor agonists baclofen and muscimol12. Inactivation of 
the prelimbic cortex significantly increased the number of shock trials, which came at the 
expense of the number of success trials, without affecting behavior during no-stimulus trials, 
or the number of omissions (Fig. 2a). Consequently, the shock index, which measures the 
fraction of stimulus trials in which the animal retrieved the pellet during the stimulus, thus 
receiving foot shock, increased significantly. No significant effects on the speed with which 
the animals retrieved the pellet were observed (Fig. 2a). This pattern of effects matches 
the phenotype corresponding to loss of control over behavior (Fig. 1b), suggesting that 
inactivation of the prelimbic cortex impaired the ability of animals to inhibit their urge to 
approach the pellet, despite the presence of the threat signal. Inactivation of the infralimbic 
cortex yielded the same pattern of effects (Fig. 2b). That is, an increase in the number of 
shock trials, a decrease in success trials and an increased shock index, without a change in 
behavior during no-stimulus trials or an effect on any of the latency measures. 
 Medial orbitofrontal cortex inactivation also impaired control over behavior, as 
apparent by a significant increase in the number of shock (but not a decrease in success) 
trials and thereby an increase in the shock index, although this effect was numerically more 
modest than after inactivation of the prelimbic and infralimbic cortices (Fig. 2c). In addition, 
it significantly decreased the latency of pellet retrieval during shock trials, indicating that if 
the animals entered the food port during the stimulus, this happened during an earlier stage 
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Lateral orbitofrontal cortex and basolateral amygdala inactivation disrupt task performance
Inactivation of the lateral orbitofrontal cortex and the basolateral amygdala impaired task 
performance, but in different ways. After inactivation of the lateral orbitofrontal cortex, we 
observed a significant increase in the number of omitted trials, as well as higher latencies of 
pellet retrieval in no-stimulus trials and success trials (Fig. 3a). Furthermore, no decrease in 
the number of shock trials was observed, hence the shock index was significantly increased. 
This pattern of effects suggests a reduction in task engagement.
 Basolateral amygdala inactivation induced a dramatic increase in the number of 
shock trials, leading to a shock index of ~90%, meaning that 9 out of 10 port entries during 
stimulus trials were during the stimulus, and hence were punished (Fig. 3b). No effect was 
observed on the number of omissions during stimulus trials, and neither were there any 
effects on behavior during no-stimulus trials. Thus, basolateral amygdala inactivation only 
affected behavior around the stimulus presentation. Interestingly, the latency of pellet 
retrieval during shock trials was reduced (i.e., animals were able to control their behavior 
for a shorter amount of time), while an increase in latency was observed during success 
trials (i.e., after successful control, animals did not directly take the pellet after stimulus 
offset). This pattern of effects (see Fig. 1b) suggests that basolateral amygdala inactivation 
impaired the ability of the animals to retrieve the value of the stimulus, so that animals 
ostensibly behaved as if there was no threat signal presented.

Activity in the striatum is important for task engagement
After pharmacological inactivation of the ventral striatum, we observed a significant 
increase in the number of omissions during both trial types (Fig. 4a). During stimulus trials, 
this occurred at the expense of the total number of success trials. No change in the number 
of shock trials was observed. Because of this decrease in the number of success trials, we 
observed an increase in the shock index, as the relative amount of shock trials increased. 
Although no effects on latencies of pellet retrieval were found, it must be noted that due to 
the large amount of omissions, these latencies were based on a low number of trials (or even 
no trials for animals that made exclusively omissions). After histological verification of the 
infusion sites, we observed that most guide cannulas were positioned above the core region 
of the nucleus accumbens. However, when only analyzing the animals in which the infusions 
were targeted at the nucleus accumbens shell, the same pattern of effects was observed 
(Fig. S4).
 Pharmacological inactivation of the dorsolateral and dorsomedial striatum showed 
a similar, although attenuated, pattern of effects. As such, dorsomedial striatum inactivation 
resulted in a trend towards an increase in the number of omissions during no-stimulus trials 
and a significant increase in omissions during stimulus trials, which was associated with 
a reduction in the number of success trials (Fig. 3b). After inactivation of the dorsolateral 
striatum, we observed a trend towards a reduction of the number of success trials and 
a significant increase in the shock index (Fig. 3c). No effect was observed on the shock 
index after inactivation of the dorsomedial striatum. Furthermore, a trend towards and a 
significant reduction in the latency of pellet retrieval during success trials was observed after 
pharmacological inactivation of the dorsolateral and dorsomedial striatum, respectively. 

Control experiments
As a negative control region, we inactivated the dorsolateral part of the olfactory cortex, 
which is located ventral of the orbitofrontal cortex (Fig. 5a). This inactivation did not affect 
any of the behavioral parameters, indicating that the olfactory cortex is not essential for 
task performance, and it suggests that the infused GABA receptor agonists did not spread 
throughout the brain to induce infusion site-unspecific behavioral effects.
 It is possible that changes in nociception underlie the effects we observed in this 
study. For example, animals may become less or more sensitive to the foot shock, resulting in 
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Figure 3: Pharmacological inactivation of lateral orbitofrontal cortex and basolateral amygdala
a. Effects of pharmacological inactivation of the lateral orbitofrontal cortex on task behavior. 
b. Effects of pharmacological inactivation of the basolateral amygdala on task behavior.  
Red crosses in the coronal brain sections represent the infusion sites in each experiment. Gray lines in 
shock index graphs indicate individual animals. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 in 
paired t-test; see Supplementary statistics table.

of stimulus presentation. This suggests that if the animals lost control over behavior after 
medial orbitofrontal cortex inactivation, they were able to inhibit themselves for a shorter 
period of time compared to baseline.
 Inactivation of the anterior cingulate cortex also evoked disinhibition of behavior. 
Thus, the number of success trials was reduced, and the number of shock trials, as well 
as the shock index, increased. Latency analysis revealed that animals also became slower 
in pellet retrieval during no-stimulus trials, where they were allowed to consume the pellet 
directly without negative consequences (Fig. 2d). Thus, animals responded slower than 
under baseline conditions, suggesting that additional cognitive functions, such as attention, 
could be impaired.
 Together, these data suggest that the prelimbic, infralimbic, and medial orbitofrontal 
cortices have a role in mediating control over behavior in this task, while the anterior 
cingulate cortex may also serve other cognitive functions that are necessary for correct 
task execution.
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changes in behavior during stimulus trials. To control for this possible effect, we performed 
a tail withdrawal test in the animals, and observed no changes in latency to tail withdrawal 
after inactivation of the brain regions in which we found increases in the number of shock 
trials (Fig. 5b). We also conducted a free-feeding assay, since changes in appetite may 
change behavior in tasks that involve food reward (see Fig. S3). In none of the brain areas 
we observed changes in chow intake in the 2 hours following baclofen/muscimol infusion 
(Fig. 5c). These findings suggest that the observed effects in the behavioral task were not 
induced by changes in nociception or hunger.
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Figure 4: Effects of pharmacological inactivation of striatal subregions on task behavior. Red crosses 
in the coronal brain sections represent the infusion sites in each experiment. Gray lines in shock index 
graphs indicate individual animals.  
**** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05, # P < 0.1 in paired t-test (see Supplementary 
statistics table).

Figure 5: Control experiments.  
a. Effects of pharmacological inactivation of the olfactory cortex on task behavior. 
b. Pharmacological inactivations did not the change latency to tail withdrawal in a tail withdrawal test (2-
way repeated measures ANOVA, main effect of infusion, and infusion × group interaction effect, both P > 
0.05). 
c. Pharmacological inactivations did not change chow intake in a free-feeding assay (2-way repeated 
measures ANOVA, main effect of infusion, and infusion × group interaction effect, both P > 0.05). 
See Supplementary statistics table for statistics.
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Discussion
In this study, we presented a novel task that studies the ability of rats to inhibit their urge 
to consume a visibly present food reward during the presentation of an audiovisual threat 
signal. Importantly, in this task, control over behavior comprises refraining from consumption 
of palatable food. Given that many day-to-day examples of loss of control over behavior 
encompass behavior directed at primary rewards, like food or drugs, this task aims to provide 
a more naturalistic approach to inhibition of behavior, since the animals have to balance two 
innate urges: approach to food reward versus an avoidance response to punishment. An 
additional benefit is that this task requires relatively little training (Fig. S1), as animals do 
not have to learn any operant responses to receive reward. Furthermore, using this task, 
we can discern different aspects of task behavior, including a failure to retrieve stimulus 
value, a lack of motivation, and compromised inhibition of behavior. One drawback of our 
task is that once animals have acquired the task, they often have very low baseline levels of 
shock trials, making strengthening of behavioral control hard to detect. Our approach shows 
similarities to certain models of relapse to drugs seeking, in which animals are confronted 
with behavioral conflict between pursuing (drug) reward and avoiding punishment15,16.
 Utilizing our new paradigm, we found that a wide array of corticolimbic regions 
is involved in the proper exertion of behavioral inhibition. Inactivation of the ventral parts 
of the medial PFC (prelimbic, infralimbic and medial orbitofrontal cortex) evoked a loss-of-
control phenotype, i.e., a substantial increase in the number of shocks incurred, a decrease 
in success trials, without major changes in omissions or latencies (see Fig. 1b, left panel). 
This indicates that control over behavior under threat of punishment is governed by a neural 
network with the medial PFC as a core component, with a possible gradient across the 
dorsoventral axis. This is consistent with the notion that in our task, behavior is dependent 
on the weighing of the costs and benefits of a decision — a function that has been attributed 
to the PFC17-19.
 In contrast to the medial PFC, we observed a phenotype after pharmacological 
inactivation of the lateral orbitofrontal cortex that is reminiscent of a reduction in task 
engagement or incentive motivation. As such, we observed an increase in omissions, which 
came, during stimulus trials, at the expense of the number of success trials. Moreover, the 
significant increases in pellet retrieval latencies also point towards a reduction in motivation 
to obtain the reward or to a reduction in task engagement. Such a reduced task engagement 
may be the result of an inability to comprehend the task, consistent with recent theories of 
the lateral orbitofrontal cortex in guiding task execution by keeping a cognitive map of task 
structure20,21, rather than the lateral obitofrontal cortex being directly involved in incentive 
motivation9,22. 
 Inactivation of the basolateral amygdala evoked a phenotype that matched our 
hypothesized phenotype of a failure to retrieve stimulus value (Fig. 1b, middle panel). Thus, 
after infusion of baclofen and muscimol, we observed a dramatic increase in the number 
of shock trials, without effects on omissions or behavior during no-stimulus trials. Given 
that the latency of pellet retrieval in success trials was also increased, we speculate that 
animals did not comprehend the offset of the threat signal, suggesting that animals were 
not able to retrieve the value of the audiovisual stimulus. As such, the animals behaved as 
if no threat signal was presented during stimulus trials, and entered the food port during the 
stimulus, thus receiving foot shock punishment, on the vast majority of trials. This data is 
consistent with a wealth of literature that shows an involvement of the basolateral amygdala 
in responding to a conditioned cue9,11,23,24, thereby evoking behavior that is ostensibly fearless 
and punishment insensitive.
 After pharmacological inactivation of the ventral striatum, the animals behaved 
as if they were less motivated for the reward. As such, we observed an increased number 
of omissions, and a reduced number of rewards collected, even during no-stimulus 
trials. Inactivation of the dorsal parts of the striatum showed an attenuated version of 

this phenotype, suggesting that the motivational processes that are important for task 
performance are primarily encoded by ventral striatal circuits10,25. It must be noted, however, 
that we pharmacologically inactivated a relatively anterior part of the dorsal striatum, and 
there is evidence of a functional-anatomical gradient across its anteroposterior axis26-28. For 
example, goal-directed behavior is shown to be dependent on the poster, but not anterior, 
region of the dorsomedial striatum29. It might therefore be the case that behavioral control 
is mediated by the dorsal striatum, but that this process takes place in its posterior parts, 
especially because the absence of effects on the absolute number of shock trials challenges 
the classic view of the basal ganglia as part of the final common pathway of motoric Go/
NoGo responses30-32.
 In sum, using a novel behavioral control task in rats, we show that behavioral 
inhibition is dependent on a network of corticolimbic areas, with the ventromedial PFC at its 
core, aided by striatal and orbitofrontal regions involved in task engagement and incentive 
motivation, and the basolateral amygdala to encode the value of relevant conditioned 
stimuli. Our data provide an important step in the dissection of the brain circuits involved 
in behavioral inhibition, and hence contribute to the understanding of behaviors that are 
associated with poor control over behavior, including binge eating and drug abuse.

References
1. van der Plasse, G. et al. Modulation of cue-induced firing of ventral tegmental area 

dopamine neurons by leptin and ghrelin. Int. J. Obes. (Lond) 39, 1742-1749 (2015).
2. Nederkoorn, C., Braet, C., Van Eijs, Y., Tanghe, A. & Jansen, A. Why obese children 

cannot resist food: the role of impulsivity. Eat Behav. 7, 315-322 (2006).
3. Nederkoorn, C., Houben, K., Hofmann, W., Roefs, A. & Jansen, A. Control yourself or 

just eat what you like? Weight gain over a year is predicted by an interactive effect of 
response inhibition and implicit preference for snack foods. Health Psychol. 29, 389-
393 (2010).

4. Winstanley, C. A., Eagle, D. M. & Robbins, T. W. Behavioral models of impulsivity in 
relation to ADHD: translation between clinical and preclinical studies. Clin. Psychol. 
Rev. 26, 379-395 (2006).

5. Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of 
response control. Prog. Neurobiol. 108, 44-79 (2013).

6. Dalley, J. W. & Robbins, T. W. Fractionating impulsivity: neuropsychiatric implications. 
Nat. rev. Neurosci. 18, 158-171 (2017).

7. Pattij, T. & Vanderschuren, L. J. The neuropharmacology of impulsive behaviour. Trends 
Pharmacol. Sci. 29, 192-199 (2008).

8. Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down 
cognitive control. Neuron 69, 680-694 (2011).

9. Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. Emotion and motivation: the role 
of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 
321-352 (2002).

10. Floresco, S. B. The nucleus accumbens: an interface between cognition, emotion, and 
action. Annu. Rev. Psychol. 66, 25-52 (2015).

11. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284-
292 (2015).

12. McFarland, K. & Kalivas, P. W. The circuitry mediating cocaine-induced reinstatement 
of drug-seeking behavior. J. Neurosci. 21, 8655-8663 (2001).

13. Nieh, E. H. et al. Decoding Neural Circuits that Control Compulsive Sucrose Seeking. 
Cell 160, 528-541 (2015).

14. Verharen, J. P. H. et al. A neuronal mechanism underlying decision-making deficits 
during hyperdopaminergic states. Nat. commun. 9 (2018).

15. Cooper, A., Barnea-Ygael, N., Levy, D., Shaham, Y. & Zangen, A. A conflict rat model of 

CH
APTER 6   CO

RTICO
LIM

BIC M
ECH

AN
ISM

S O
F BEH

AVIO
RAL IN

H
IBITIO

N

138 139



cue-induced relapse to cocaine seeking. Psychopharmacology (Berl) 194, 117-125 
(2007).

16. Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A. & Shaham, Y. Context-induced 
relapse to alcohol seeking after punishment in a rat model. Biol. Psych. 73, 256-262 
(2013).

17. Miller, E. K. & Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. Annu. 
Rev. Neurosci. 24, 167-202 (2001).

18. Floresco, S. B. Prefrontal dopamine and behavioral flexibility: shifting from an 
“inverted-U” toward a family of functions. Front Neurosci. 7, 62 (2013).

19. Tang, H., Sun, X., Li, B. & Luo, F. Neural representation of cost-benefit selections in 
medial prefrontal cortex of rats. Neurosci. letters 660, 115-121 (2017).

20. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a 
cognitive map of task space. Neuron 81, 267-279 (2014).

21. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not 
do. Nat. neurosci. 18, 620-627 (2015).

22. Izquierdo, A. Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward 
Learning and Decision Making. J. Neurosci. 37, 10529-10540 (2017).

23. Davis, M. Neurobiology of fear responses: the role of the amygdala. The J. of 
neuropsych. and clin. neurosci. (1997).

24. Barad, M., Gean, P. & Lutz, B. The Role of the Amygdala in the Extinction of Conditioned 
Fear. Biol. Psych. 60, 322-328 (2006).

25. Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. 
Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468-
474 (2004).

26. Reynolds, S. M. & Berridge, K. C. Fear and feeding in the nucleus accumbens shell: 
rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. 
J. Neurosci. 21, 3261-3270 (2001).

27. Pan, W., Mao, T. & Dudman, J. Inputs to the Dorsal Striatum of the Mouse Reflect the 
Parallel Circuit Architecture of the Forebrain. Frontiers in Neuroanat. 4 (2010).

28. Mestres-Missé, A., Turner, R. & Friederici, A. D. An anterior–posterior gradient of 
cognitive control within the dorsomedial striatum. NeuroImage 62, 41-47 (2012).

29. Yin, H. H., Ostlund, S. B., Knowlton, B. J. & Balleine, B. W. The role of the dorsomedial 
striatum in instrumental conditioning. Eur. J. of Neurosci. 22, 513-523 (2005).

30. Aron, A. R. et al. Converging evidence for a fronto-basal-ganglia network for inhibitory 
control of action and cognition. J. Neurosci. 27, 11860-11864 (2007).

31. Peters, J., LaLumiere, R. T. & Kalivas, P. W. Infralimbic prefrontal cortex is responsible 
for inhibiting cocaine seeking in extinguished rats. J. Neurosci. 28, 6046-6053.

32. Humphries, M. D. & Prescott, T. J. The ventral basal ganglia, a selection mechanism at 
the crossroads of space, strategy, and reward. Prog. Neurobiol. 90, 385-417 (2010).

CH
APTER 6   CO

RTICO
LIM

BIC M
ECH

AN
ISM

S O
F BEH

AVIO
RAL IN

H
IBITIO

N

SUPPLEMENTARY FIGURE 1

Behavior during stimulus trials over the 12 training sessions in a batch of n = 20 rats (animals from 
infralimbic and medial orbitofrontal cortex groups). On average, after the 8th training session, animals 
waited successfully during the majority of stimulus trials. After the 12th session, the experiment 
commenced. Asterisks denote that this session was the second training session of a day.
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SUPPLEMENTARY FIGURE 2

Latencies of pellet retrieval for the different trial types. **** P < 0.0001, *** P < 0.001; see Supplementary 
statistics table.

SUPPLEMENTARY FIGURE 3

Behavior of the animals after devaluation of reward by selective prefeeding with sucrose pellets matched 
the expected phenotype of ‘loss of motivation’. Gray lines in shock index graph indicate individual 
animals. # P < 0.1, * P < 0.05, ** P < 0.01 in paired t-test; see Supplementary statistics table.

SUPPLEMENTARY FIGURE 4

Same as figure 4a, but only with animals for which the infusions were in the medial shell subregion of 
the ventral striatum.
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• We studied the involvement of the dopamine 
system in behavioral inhibition by utilizing a 
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Excessive intake of rewards, like food and drugs, often has explicit negative 
consequences. Thus, choosing not to pursue reward is the result of a cost/
benefit decision, execution of which requires behavioral control. Although 
the dopamine system has been implicated in behavioral control, the neural 
underpinnings of this process are incompletely understood. Therefore, we 
studied the involvement of midbrain dopamine neurons and their output 
regions in behavioral inhibition under threat of punishment, by employing 
a recently developed ‘control over behavior’ task for rats. Using in vivo fiber 
photometry, chemogenetics, c-Fos immunohistochemistry and behavioral 
pharmacology, we found little evidence for a direct involvement of midbrain 
dopamine neurons in inhibitory control over behavior. Rather, the dopamine 
system seemed to have a role in the motivational component of pursuing 
reward. Together, our data provide new insights into the mesocorticolimbic 
mechanisms behind motivated behaviors by showing a modulatory role of 
dopamine in the expression of cost/benefit decisions.

Introduction
Inhibitory control over behavior is a process that can help to limit the pursuit of reward, and 
thereby prevent the occurrence of explicit negative consequences that are associated with 
the excessive intake of reward. In humans, this may for example be the ability to limit the 
intake of tasty foods in order to prevent obesity, or the ability to refrain from using alcohol 
and drugs in order not to develop addiction. To study the process of behavioral inhibition 
in the face of possible punishment, we recently developed a task that studies control over 
the intake of sucrose pellets in rats1. In this task, behavioral control is required during the 
presentation of an audiovisual threat signal, where an inability to resist the temptation to 
eat the pellet during this threat signal is punished by a mild electric foot shock. Employing 
this paradigm, we showed that activity in the ventromedial region of the rat prefrontal cortex 
(vmPFC) is essential for the exertion of behavioral control, without any effects on task 
behavior when the animals could take the reward freely, i.e., without the risk of negative 
consequences. In contrast, the nucleus accumbens (NAc) was important for the motivational 
aspects of behavior in this task1.
 Dopamine (DA) has been widely implicated in inhibitory control over behavior2-5. For 
example, high trait impulsivity in humans has been associated with low DA release in the 
striatum and low DA D2 receptor availability6,7, and monoamine reuptake inhibitors are the 
cornerstone in the treatment of impulse control disorders like ADHD. Furthermore, functional 
manipulations of the DA system affect levels of impulsive action8,9 and impulsive choice10,11 in 
rodents, suggesting a causal role of DA neurotransmission in control over behavior. However, 
the exact mechanism by which DA or its target regions exert control over behavior remains 
elusive, and it is unknown whether DA neurons are directly engaged during the execution of 
behavioral control. Importantly, both the vmPFC and the NAc, that play complimentary roles 
in performance of our behavioral inhibition task1, receive dense DAergic inputs12. 
 Here, we employed a multidisciplinary approach, combining behavioral 
pharmacology, fiber photometry, chemogenetics and c-Fos immunohistochemistry to study 
the involvement of the mesocorticolimbic DA system in control over behavior in rats. We 
hypothesized that ventral tegmental area (VTA) DA neurons directly mediate task behavior, 
by altering DA release in downstream regions. We predicted an important role of mesocortical 
DA in the exertion of behavioral control and of mesolimbic DA in the motivational aspects 
of the task, based on the phenotypes observed after pharmacological inactivation of the 
vmPFC and NAc, respectively1.

Materials and methods
Animals
A total of 74 male rats with a Long-Evans background, either wild-type Rj:Orl (Janvier labs, 
France; for c-Fos and intracranial infusion experiments) or TH::Cre rats (bred in-house; for 
photometry and chemogenetics experiments), weighing at least 250 grams at the start of 
the experiments, were used. Rats were housed in pairs on a 12h/12h reversed day-night 
cycle (lights off at 8 A.M.). After surgery, animals that received a head implant (photometry 
and intracranial infusion experiments) were housed individually to prevent damage to the 
implant. All experimental procedures were conducted in agreement with Dutch laws (Wet op 
de Dierproeven, 2014) and European guidelines (2016/63/EU) and approved by the Animal 
Ethics Committee of Utrecht University and the Dutch Central Animal Testing Committee.

Surgeries
Animals were anesthetized by an intramuscular injection of a cocktail of 0.315 mg/kg 
fentanyl and 10 mg/kg fluanisone (Hypnorm, Janssen Pharmaceutica, Belgium). They were 
then placed in a stereotaxic apparatus (David Kopf, United States), an incision was made 
along the midline of the skull and craniotomies were made above the areas of interest:

  VTA  AP -5.4 mm   ML ±2.2 mm  DV -8.9 mm from skull under a 10° angle
  NAc (core) AP +1.2 mm  ML ±2.1 mm  DV -6.3 mm from skull under a 5° angle
  NAc (shell) AP +1.2 mm  ML ±2.7 mm  DV -7.0 mm from skull under a 10° angle
  vmPFC  AP +3.2 mm  ML ±0.6 mm  DV -3.8 mm from skull

For the NAc and vmPFC, these dorsoventral coordinates reflect the position to which the 
guide cannulas were lowered; for the VTA, these coordinates reflect the site of viral injection.
 For the intracranial infusion experiments, either one 23G guide cannula was used 
that had a double protrusion, spaced 1.2 mm apart (for the vmPFC; Plastics One, United 
States), or two 23G guide cannulas with a single protrusion (for the NAc; Plastics One, United 
States) were used. Guide cannulas were lowered to the desired coordinates, secured with 
screws, dental glue (C&B Metabond, Parkell Prod Inc., United States) and dental cement, and 
the skin around the cemented cap was sutured. Dummy cannulas were placed inside the 
guide cannulas. 
 For fiber photometry, 1 μl of AAV5-FLEX-hSyn-GCaMP6s or AAV5-hSyn-eYFP 
(University of Pennsylvania Vector Core; 1012 particles/ml), was injected into the right VTA of 
TH::Cre rats and an optic fiber (diameter 400 µm; Thorlabs, Germany) was lowered to 0.1 mm 
dorsal of the injected area and secured with screws and dental cement. For chemogenetic 
experiments, 0.5 μl of AAV5-hSyn-DIO-hM3Gq-mCherry (UCN Vector Core; 2 × 1012 particles/
ml) was injected bilaterally into the VTA of TH::Cre rats. Virus was infused at a rate of 0.2 
μl/min, and needles were kept in place for an additional 5 minutes after infusion to ensure 
proper diffusion of the virus into the tissue. For these experiments, measurements were 
conducted at least 4 weeks later to ensure proper levels of viral expression.
 After surgery, all animals received carprofen for pain relief (5 mg/kg, 1x/day, for 3 
days, subcutaneously) and saline for rehydration (10 ml once, subcutaneously). Animals 
were allowed to recover for at least a week before behavioral training started.

Behavioral task
The behavioral task has been extensively described in ref. 1. In brief, we used a task that 
studies the ability of rats to inhibit their urge to approach a visibly present sucrose pellet 
during the presentation of an audiovisual threat stimulus. The task comprised 60 trials of 40 
seconds each, in which at the start of every trial a sucrose pellet was delivered into a food port 
(Fig. 1a, left panel). In half of the trials, delivery of this sucrose pellet was not paired with any 
audiovisual cues, which signaled to the animal that it was safe to consume the pellet directly 
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without any negative consequences (Fig. 1a, right panel, ‘no-stimulus trial’). In the other half 
of the trials, sucrose pellet delivery co-incided with the onset of an audiovisual (tone+light) 
cue, which lasted for 12 seconds (Fig. 1a, right panel, ‘stimulus trial’). In these trials, the rat 
had to wait with entering the food port until stimulus termination, thus inhibiting the impulse 
to consume the sucrose pellet. If the rat managed to do so, it was allowed to take the pellet 
without further consequences (‘success trial’). If the animal was not able to wait and entered 
the food port during the stimulus, thus losing control over behavior, the stimulus terminated 
and the animal received a short foot shock punishment (0.3s; ‘shock trial’). The intensity of 
this foot shock was determined for each animal separately during the training phase, but 
kept constant within the same animal throughout the experiment. Animals typically showed 
‘attract and repel’ behavior with regards to the sucrose pellets (Fig. 1b), likely reflecting 
behavioral conflict1. For the behavioral data, a shock index was computed, which represents 
the amount of shock trials as a fraction of the amount of shock+success trials, i.e., it is a 
measure for the amount of shock trials as a function of the total stimulus trials, corrected 
for the number of omissions.

Experimental procedures
Experimental procedures are described in ref. 1. In brief, behavioral training and testing took 
place in the dark phase of the reversed day/night cycle. The behavioral task was conducted 
in operant conditioning chambers (MedPC, Med Associates Inc., United States), equipped 
with a food port with an infra-red movement detector, flanked by two cue lights, a pellet 

dispenser delivering 45 mg sucrose pellets (SP; 5TULl; TestDiet, United States), a tone 
generator, a house light and a shock grid floor.
 During behavioral training, animals were kept on a food restriction regimen of 4 
gram chow per 100 gram body weight, but had ad libitum access to tap water in the home 
cage. Animals were trained for 5-7 days a week, and received one or two training sessions 
per day. In the first training phase, animals learned to retrieve a sucrose pellet that was 
delivered into the pellet dispenser at a fixed interval of 40s; this was essentially the final task 
version but without the stimulus trials. The group of animals progressed to the second and 
final training phase when all animals retrieved the pellet in at least 55 of the 60 trials. In the 
final training phase, animals received the regular version of the task, and foot shock intensity 
was initially set at 0.35 mA. Foot shock intensity was gradually increased with 0.05 or 0.1 
mA between sessions when the majority of stimulus trials was punished (punishment too 
mild), and was decreased if the majority of trials was omitted (punishment too intense). The 
foot shock intensity was kept constant for an animal when at least 20 out of 30 stimulus 
trials were ‘success’ trials. During behavioral testing, animals were food restricted for ~3h 
prior to the task.

Fiber photometry
Fiber photometry was conducted with a custom-built single wavelength fiber photometry 
system, as described in ref. 13. In brief, blue 490 nm LED light (Thorlabs, USA) was lock-
in amplified  (Amplifier SR810; Stanford Research Systems, USA) and delivered through a 
patch cord (400 µm core diameter; Thorlabs, USA), connected to a stereotaxically placed 
optic fiber (400 µm diameter; Thorlabs, USA) using a 2.5 mm ceramic ferrule (Thorlabs, USA). 
Green emission light traveled back through the patch cord, was passed through a dichroic 
mirror (Semrock, USA) and detected by a photodetector (Newport Corporation, USA). The 
signal was then passed on to the lock-in amplifier and digitized (Digidata 1550a; Molecular 
Devices, USA). Next, the raw signal was converted to dF/F values by normalizing each time 
point Fx to the baseline F0, which was defined as the average of the 50% middle values of 
the 30 seconds preceding each time point Fx. We then re-aligned the dF/F traces to the 
average latencies of pellet retrieval of all 6 animals, so that the different behaviors could be 
time-locked into one single graph, as has been done in ref. 14. This was accomplished by 
compressing or stretching the dF/F signal of every trial so it would fit the average latency 
of pellet retrieval (the average time between pellet drop and retrieval) of the group, using the 
Matlab command ‘resizem’.

Chemogenetics
Animals were injected i.p. with the hM3Dq ligand clozapine-N-oxide (CNO; NIH Drug Supply 
Program) at a concentration of 0.5 mg/kg dissolved in saline. After injection, animals were 
placed back into their home cage for 20-30 minutes, before behavioral testing commenced. 
For the locomotor test, animals were injected with CNO 10 minutes after the start of the 
experiment (denoted by an arrow in the graph). 

Intracranial infusions
For the infusion experiment, injectors were used that protruded 0.6 (NAc) or 1 (vmPFC) mm 
beyond the termination point of the guide cannulas. One day before the infusions, animals 
were habituated to the infusion procedure by infusion of 0.3 μl sterile saline. On testing day, 
animals received an infusion of 0.3 μl saline or 20 μg of cis-(Z)-α-flupenthixol dihydrochloride 
(Sigma-Aldrich, The Netherlands) dissolved in 0.3 μl saline (counterbalanced between days). 
The drug was infused with an infusion pump (Harvard Apparatus, United States), set at a 
rate of 0.5 μl/min. After infusion, injectors were kept in place for an additional 30 seconds (to 
allow diffusion of the drug into the tissue), and animals were placed back in the home cage 
for 10-20 minutes before testing began.

Figure 1: Behavioral control task
a. Behavioral setup. Animals received 60 sucrose pellets at a fixed interval of 40 seconds. Half of the 
trials were ‘no-stimulus’ trials, in which the animals could directly retrieve the pellet without negative 
consequences. The other half of the trials were ‘stimulus’ trials, in which pellet delivery co-incided with 
the presentation of an audiovisual threat signal. During this threat signal, food port entry was punished 
with an electric foot shock.  
b. Quantification of behavior in an example stimulus trial, demonstrating ‘attract and repel’ behavior 
towards and away from the food port during behavioral inhibition.  
Figure modified from ref. 1.
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c-Fos immunohistochemistry
For the c-Fos experiments, 18 animals were trained on the normal version of the task with 
60 trials, comprising 30 stimulus trials and 30 no-stimulus trials. During the test session, 
half the group received 25 stimulus trials (‘stimulus group’) and the other half received 25 
no-stimulus trials (‘no-stimulus group’). In an earlier experiment, we omitted the foot shocks 
from the stimulus trials (to prevent the foot shocks themselves to induce c-Fos expression), 
however, this directly lead to a dramatic reduction in the number of successfully waited trials 
(i.e., fast extinction of the inhibition response). 
 90 minutes after termination of the behavioral task, the animals were transcardially 
perfused with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA) in 
PBS. Brains were post-fixed in PFA for 24 hours at 4°C followed by a 30% sucrose solution 
at 4°C. Brain sections (40 μm) were cut with a cryostat and were stained for c-Fos using 
a 3,3’-Diaminobenzidine (DAB) protocol. First, the sections were blocked for 60 minutes 
at room temperature using a mixture of 10% normal goat serum and 0.5% Triton-X in PBS, 
and were then incubated in primary rabbit antibody directed against c-Fos (1:1,000; Cell 
Signaling) in 3% normal goat serum in PBS, overnight at room temperature. The next day, the 
sections were washed with PBS and incubated with a secondary biotinylated goat antibody 
directed against rabbit (1:200; Vector labs) for 120 minutes in 3% normal goat serum at room 
temperature. Sections were then washed in PBS and incubated in Biotin/Avadin (1:1,000; 
Vectastain) in PBS for 60 minutes. Afterwards, the sections were stained for 3 minutes using 
liquid DAB (Dako) with 2% nickel ammonium sulphate. After staining, the sections were 
dehydrated and mounted with a xylene-based mounting medium.
 Sections were photographed using a brightfield microscope (at a 5X magnification; 
AxioImager M2) and c-Fos analysis was performed in a semi-automated fashion using an 
ImageJ  (Version 1.51s) routine. In brief, the microscopic images were Fourier-transformed, 
and a band-pass filter was applied, band-pass filtering structures of approximately the size 
of c-Fos-expressing nuclei (filter was set between 3-6 pixels). Next, peaks in the band-passed 
image were found using ImageJ’s ‘Find maxima’ function (threshold was set at 145). For 
each region of interest, the total number of c-Fos-expressing cells and the surface area were 
given, which were used to compute the density of c-Fos in that region of interest.

Histological verification
After behavioral experiments, animals were transcardially perfused and brains were sliced 
according to the protocol described above in paragraph ‘c-Fos immunohistochemistry’. For 
chemogenetic experiments, VTA sections (50 μm) were cut using a cryostat and stained for 
hM3Dq and tyrosine hydroxylase (TH) by using free-floating immunohistochemistry. First, 
sections were blocked for 60’ using 3% normal goat serum and 0.3% Triton-X in PBS, and then 
overnight incubated at 4° using primary antibodies (1:1,000) directed against mCherry (rabbit 
anti-dsRed; Clontech Living Colors #632496) and TH (mouse anti-TH; Millipore #MAB318) 
in blocking solution. The next day, sections were washed in PBS and incubated for 120’ 
with secondary antibodies (1:1,000) against rabbit (goat anti-rabbit 568; Abcam #175471) 
and mouse (goat anti-mouse 488; Abcam #150113). Brain slices were then mounted and 
coverslipped using FluorSave (Merck Millipore, USA). Images were photographed using 
an epimicroscope to ensure bilateral expression of the hM3Dq-mCherry. For histological 
verification of the infusion sites, brain sections were mounted and colored with 5% Giemsa 
(Sigma-Aldrich, The Netherlands) dissolved in distilled water. 

Exclusion criteria
Histological verification of infusion sites and viral expression was performed by an 
experimenter blind to the experimental results. One animal from the vmPFC infusion group 
was excluded based on misplacement of the cannulas. One animal from the NAc infusion 
group was excluded because it lost its head cap. Four animals were excluded from the VTA 

hM3Dq group because of unilateral expression (2 animals), no expression (1 animal) or 
hydrocephalus (1 animal). Two animals were excluded from the c-Fos experiment; one animal 
because it was hydrocephalic and one animal because the c-Fos staining had not worked 
(presumably because of an experimental mistake during the staining process). Infusions in 
the NAc were initially separately targeted at the NAc shell and core, but these groups were 
eventually combined because the areas were difficult to histologically distinguish, and it was 
unclear whether the infused volume remained restricted to these NAc subregions.

Code availability
The MedPC script of the task is available at http://www.github.com/jeroenphv.

Statistics
Statistical tests were performed with Prism 6.0 (GraphPad Software Inc., United States). 
For the dF/F response to food approach of the photometry experiment, a one-way repeated 
measures of analysis of variance (ANOVA) was used, with stimulus type as a within-subjects 
repeated measures factor, followed by a Bonferroni post-hoc test. For the locomotor test, a 
two-way repeated measures ANOVA was used in the time-bin analysis (with time-bin as a 
within-subjects repeated measures factor and genotype as a between-subjects factor) and 
an unpaired t-test in the cumulative distance moved analysis. For the data of the behavioral 
control task, individual paired t-tests were used to compare treatment  (CNO or α-flupenthixol) 
with baseline (saline). For the c-Fos experiment, a two-way ANOVA was used with brain area 
and group as between-subject factors. In all figures, the statistical range is denoted as: * 
P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. All test statistics are presented in the 
Supplementary statistics table.

Results
VTA DA neurons encode reward, but not control over behavior
To study the activity of midbrain DA neurons during successful and unsuccessful control 
over behavior, we measured population activity of VTA DA neurons by employing in vivo fiber 
photometry15 in TH::Cre rats (Fig. 2a,b). Based on the different theories of DA function in 
the brain, we formulated four hypotheses about the expected activity patterns (Fig. 2c). 
First, DA neurons may encode reward or reward prediction error16,17, resulting in increased 
activity when animals can retrieve the pellet without punishment (i.e., after pellet drop in no-
stimulus trials or after tone offset in stimulus trials). During stimulus presentation, neurons 
could either show increased or decreased activity, as both a reward and threat signal are 
presented, or a combination of the two, which may lead to a net unchanged signal. Second, 
DA neurons could fire in response to any salient event18, thus increasing activity in response 
to pellet delivery, as well as stimulus presentation. Third, we hypothesized that neurons 
encode movement towards the pellet19. Finally, neurons may directly encode inhibition of 
movement14,20.
 To be able to make a direct comparison between the different animals and trial 
types, we re-aligned the neuronal population activity to the average response latencies 
of the animals, by compressing or stretching the dF/F signal (see ref. 14). This analysis 
revealed a neuronal activation pattern (Fig. 2d) that is reminiscent of the pattern expected 
based on the reward prediction error hypothesis (Fig. 2c, top panel). During ‘No-stimulus’ 
trials, in which the animals were free to take the sucrose pellet directly without negative 
consequences, we observed a ramping of DA neuron activity from pellet presentation to 
retrieval, with a decline in activity back to baseline afterwards. Similarly, during ‘Stimulus 
- success’ trials, in which animals showed successful control over behavior, we observed 
this same ramping after tone offset, i.e., when animals were free to take the pellet without 
negative consequences. No changes in DA neuron activity were observed during successful 
behavioral control. During ‘Stimulus - shock’ trials, in which animals retrieved the pellet 
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Figure 2: VTA DA neurons encoded reward or reward prediction error during the task. a. Fiber photometry 
setup. b. Histological verification. Red circles indicate fiber placement of individual animals. c. Expected 
activity patterns. d. VTA DA neuron activity during the different trial types (n = 6 rats). Bottom graph 
shows mean ± standard error of the mean of the six animals. e. Quantification of dF/F signal during food 
approach. ** P = 0.0098, * P = 0.0105 in post-hoc t-tests (see Supplementary statistics table). f. dF/F of 
animals injected with control fluorophore eYFP (n = 4 rats).

Figure 3: VTA DA neuron activation did not affect task performance. a. Experimental procedure and 
histological verification of hM3Dq-mCherry expression. Bottom and top right images represent coronal 
slices of the VTA. b. Locomotor test. Arrow indicates i.p. CNO injection (0.5 mg/kg). **** P < 0.0001 (see 
Supplementary statistics table). c. Task performance after i.p. CNO injection in hungry animals (n = 6 
rats). The shock index is a measure for the relative amount of shock trials compared for the number of 
omissions, and is computed by 100% * shock trials/(shock + success trials). Gray lines in the shock index 
graphs indicate individual animals. d. Task performance after CNO injection in ad libitum-fed animals (n = 
6 rats). Gray lines in the shock index graphs indicate individual animals.

during stimulus presentation and thus received foot shock punishment, we observed a 
similar response during the inhibition period as during ‘Stimulus - success’ trials, i.e., no 
changes in DA neuron activity during stimulus presentation. We observed an increase in DA 
neuron activity after foot shock delivery, which is something we have observed before13 and 
perhaps reflects the salience of the shock. Finally, omitted trials, in which the animals did 
not retrieve the food pellet during the entire 40s trial period, did not evoke any detectable 
changes in DA neuron activity. Comparing the changes in dF/F value during approach to the 
sucrose pellet (Fig. 2e) demonstrated higher dF/F responses to food approach during ‘No-
stimulus’ and ‘Stimulus - success’ trials as compared to ‘Stimulus - shock’ trials, suggesting 
that these DA neurons did not merely respond to movement. Importantly, no changes in 
fluorescence were observed in animals that were injected with a control fluorophore (Fig. 
2f). In sum, these data suggest that VTA DA neurons encode reward or reward prediction 
error, but not (successful or unsuccessful) behavioral control or movement.
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comprised exclusively stimulus trials, and stained the brain sections for the immediate early 
gene c-Fos, as a proxy for neuronal activity24 (Fig. 4a). We then performed semi-automated 
cell counting on two coronal slices that included the vmPFC and NAc, and compared the 
cumulative density of c-Fos levels in these brain regions. 
 A two-way analysis of variance (ANOVA) on the c-Fos density in the three major 
regions of the NAc revealed a significant main effect of group, but no group × brain region 
interaction effect, indicating that c-Fos expression was increased across the entire NAc after 
stimulus trials (Fig. 4b). In contrast, no effects of group or a group × brain region interaction 
effect were found for c-Fos density in the vmPFC (Fig. 4c). Together, these findings suggest 
that the NAc, but not the vmPFC, is recruited during stimulus trials. 

Blockade of DA receptors in the NAc and vmPFC affects task performance
To investigate the importance of DAergic neurotransmission in VTA target regions for 
performance in the task, we tested the effects of infusion of the DA receptor antagonist 

Figure 4: Animals that received stimulus trials showed enhanced c-Fos expression in the NAc, but not 
vmPFC, as compared to animals that received no-stimulus trials. 
a. Experimental procedure.  
b. c-Fos density was enriched across the entire ventral striatum after stimulus trials (* P = 0.0153, main 
effect of group in ANOVA; see Supplementary statistics table). Abbreviations: AcC, nucleus accumbens 
core; MSh, medial shell of the nucleus accumbens; LSh, lateral shell of the nucleus accumbens.  
c. Stimulus trials did not evoke changes in c-Fos density in the vmPFC (See Supplementary statistics 
table). Abbreviations: PrL, prelimbic cortex; IL, infralimbic cortex; mOFC, medial orbitofrontal cortex.

VTA DA neuron activation does not affect task performance
To assess whether hyperactivity of these same VTA DA neurons hampers the exertion of 
behavioral control, we injected TH::Cre rats with a viral vector expressing the excitatory 
chemogenetic receptor hM3Dq fused to mCherry-fluorescent protein bilaterally into the VTA 
(Fig. 3a). To confirm functional activation of these neurons, we assessed locomotor activity21 
after injection of the hM3Dq ligand clozapine-N-oxide (CNO) and observed an increase in the 
distance traveled in animals that were TH::Cre positive as compared to TH::Cre negative 
animals (Fig. 3b).
 Contrary to expectations, we observed no effects of chemogenetic VTA DA 
neuron activation on task performance in food-restricted animals (Fig. 3c). Given that food 
restriction increases baseline firing of DA neurons22,23, we speculated that firing in these 
neurons could already have been high before CNO injection, and this may have therefore 
masked an effect on task behavior. Therefore, we repeated the experiment in ad libitum-fed 
animals, but we again observed no effects of neuronal activation on task performance (Fig. 
3d). These findings indicate that increasing the activity of VTA DA neurons does not impair 
the ability of animals to exert inhibitory control over behavior.

Stimulus trials engage the NAc, but not vmPFC
To explore whether the two major VTA DA output regions, the NAc and vmPFC, are recruited 
during stimulus trials, we tested a group of animals in a task version that comprised 
exclusively no-stimulus trials and a different group of animals in a task version that 

Figure 5: DA receptor blockade by intra-NAc (a) or intra-vmPFC (b) infusion of α-flupenthixol had 
differential effects on task performance. Red crosses in the coronal brain sections represent the infusion 
sites in each experiment. Gray lines in the shock index graphs indicate individual animals. *** P < 0.001, * 
P < 0.05 in paired t-test (see Supplementary statistics table). 
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α-flupenthixol into the NAc and vmPFC (Fig. 5). During no-stimulus trials, we observed a 
significant increase in the number of omissions after α-flupenthixol infusion into the NAc 
(Fig. 5a). In stimulus trials, we observed a significant decrease in the number of success 
trials and a significant increase in the number of shock trials, but no significant effect on the 
number of omissions. Hence, the shock index was significantly increased after α-flupenthixol 
infusion. No effects were observed on the latency of pellet retrieval in either trials. Infusion 
of α-flupenthixol into the vmPFC had no effects on behavior during no-stimulus trials (Fig. 
5b). In stimulus trials, it resulted in a significant increase in the number of omissions, but 
no significant changes in the number of success or shock trials. We further observed a 
significant increase in the latency of pellet retrieval in success trials, but not in shock trials.

Discussion
In this study, we have utilized a recently developed task to assess the contribution of the 
mesocorticolimbic DA system to inhibitory control over behavior in rats. By combining 
this task with in vivo fiber photometry, chemogenetics, c-Fos immunohistochemistry and 
behavioral pharmacology, we have provided novel insights into the role of DA in behavioral 
control and other aspects of task performance. First, we have visualized neuronal dynamics 
in vivo during the moment that animals demonstrated successful and unsuccessful control 
over behavior by employing fiber photometry in TH::Cre rats. This experiment indicated that 
VTA DA neuron activity most closely represented a pattern of reward prediction error coding, 
rather than movement or inhibition of movement. When the animals successfully inhibited 
the urge to consume sucrose, VTA DA neuron transients remained unchanged, suggesting 
that the presence of the audiovisual threat cue suppressed the occurrence of the positive 
reward signal evoked by delivery of the sugar pellet. The photometry fibers were for the 
most part placed in the medial aspect of the paranigral nucleus of the VTA. As a result, our 
measurements were mostly from DA neurons projecting to the NAc core and PFC25-27. We 
can therefore not state that the observed neuronal dynamics are representative of the entire 
population of midbrain DA neurons, especially given the fact that fiber photometry measures 
aggregate fluorescence, i.e., this technique does not allow for the detection of functional 
heterogeneity in the recorded neuronal population. That said, chemogenetic activation of 
VTA DA neurons did not hamper inhibitory control in the task, which supports the notion that 
these neurons do not directly govern behavioral control. Consistently, we have previously 
found that chemogenetic activation of VTA DA neurons in TH::Cre rats did not increase 
motor impulsivity in the 5-choice serial reaction time task28. Furthermore, we have shown 
that hyperactivation of VTA DA neurons impaired the ability of rats to behaviorally adapt 
to negative, but not positive, reward prediction errors13. This may explain why we did not 
observe any effects on task behavior after CNO injection, as the photometry data indicated 
the presence of exclusively positive DA neuron transients during the task. 
 The results of the c-Fos expression experiment showed increased neuronal 
activation in the NAc, but not the vmPFC, in animals that received exclusively stimulus trials 
compared to animals that received exclusively no-stimulus trials in the task. This suggests 
that the NAc is actively engaged during the execution of stimulus trials, although it is not 
possible to determine whether this is the direct result of the NAc mediating behavioral 
control, or that it is due to other aspects of stimulus trials, like the continuous threat of 
foot shock29. Furthermore, it is interesting to note that we did not observe any significant 
changes in c-Fos expression in the vmPFC, given that we have previously demonstrated 
impairments in behavioral control after inactivation of this region1. That said, the exertion 
of behavioral control by the vmPFC does not necessarily have to be the result of a simple 
increase in the region’s activity, but may as well be due to more subtle changes in activity, 
such as alterations in the canonical computations within the vmPFC or of changed activity 
in a small subpopulation of vmPFC neurons, which would logically not result in increased 
c-Fos expression across the entire region.

 DA receptor blockade in the NAc significantly decreased the number of success 
trials and increased the absolute number of shock trials. Although this effect was 
numerically more modest than the phenotype observed after pharmacological inactivation 
of the vmPFC1, it does suggest decreased inhibitory control. However, in no-stimulus trials, 
which can be seen as a control to detect any general impairments in behavior, an increase 
in omissions was observed. This suggests that additional cognitive processes that are 
necessary for correct task execution were compromised, such as motivation or attention. 
Therefore, the effects of NAc DA receptor antagonism on behavioral control should be 
interpreted with caution. Indeed, most studies report no effect of DA receptor blockade in the 
NAc on classical measures of impulsive action and impulsive choice3,30, suggesting that the 
observed pattern of effects after DA receptor antagonist infusion was not primarily driven 
by changes in behavioral control, but rather by the disruption of other cognitive processes. 
For example, it could be the case the DA released during reward prediction, as we have 
shown with our photometry experiment, cannot be detected by the NAc, which may lead 
to alterations in motivation or impairments in the detection of pellet delivery and stimulus 
presentation. 
 In contrast to the NAc, pharmacological blockade of DA receptors in the vmPFC 
did alter behavior during stimulus trials, while not affecting behavior during no-stimulus 
trials. Interestingly, this did not seem to be related to behavioral control, but rather by a 
decreased motivation for reward in stimulus trials. As such, we observed an increase in 
the number of omissions and an increased latency of pellet retrieval in success trials. This 
phenotype is different than the one induced by pharmacological inactivation of the vmPFC, 
which was characterized by impairments in inhibitory control1, indicating that the role of 
the vmPFC in inhibitory control is not governed by DAergic neurotransmission. Instead, 
the isolated motivational effects of α-flupenthixol on stimulus, but not no-stimulus trials, 
perhaps suggests increased task-related anxiety with regards to retrieving the pellet after 
stimulus presentation. This could in turn be the result of the overexpectation of negative 
consequences, for example because of disturbances in weighing the costs and benefits 
of different courses of actions, a function that has been attributed to mesocortical DA31. 
 In sum, we have used a multidisciplinary approach to test the hypothesis that 
mesocorticolimbic DA is involved in the exertion of inhibitory behavioral control over 
food intake. We found little evidence in support of this hypothesis, as we did not observe 
changes in VTA DA neuron activity during successful and unsuccessful behavioral control. 
Furthermore, chemogenetic DA neuron activation did not affect task performance. We did 
find that stimulus trials lead to increased c-Fos expression in the NAc, and DA receptor 
blockade within the NAc resulted in an increased amount of shock trials, but this may not 
necessarily have been the result of a direct impairment in the ability to exert behavioral 
control. Furthermore, DA receptor blockade in the vmPFC did not change measures of 
inhibitory control, even though we have previously shown that activity in this area is essential 
for this behavior1. Our findings contribute to the understanding of the role of DA in motivated 
behaviors. That is, DA is not likely to be a direct mediator of the type of behavioral inhibition 
that is assessed in our task.
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The homeostatic need for sodium is one of the strongest motivational 
drives known in animals. Although the brain regions involved in the sensory 
detection of sodium levels have been relatively well mapped, data about the 
neural basis of the motivational properties of salt appetite, including a role 
for midbrain dopamine cells, have been inconclusive. Here, we employed 
a combination of fiber photometry, behavioral pharmacology and c-Fos 
immunohistochemistry to study the involvement of the mesocorticolimbic 
dopamine system in salt appetite in rats. We observed that sodium 
deficiency affected the responses of dopaminergic midbrain neurons to 
salt tasting, suggesting that these neurons encode appetitive properties 
of sodium. We further observed a significant reduction in the consumption 
of salt after pharmacological inactivation of the nucleus accumbens (but 
not the medial prefrontal cortex), and microstructure analysis of licking 
behavior suggested that this was due to decreased motivation for, but not 
appreciation of salt. However, this was not dependent on dopaminergic 
neurotransmission in that area, as infusion of a dopamine receptor 
antagonist into the nucleus accumbens did not alter salt appetite. We 
conclude that the nucleus accumbens, but not medial prefrontal cortex, 
is important for the behavioral expression of salt appetite by mediating 
its motivational component, but that the switch in salt appreciation after 
sodium depletion, although detected by midbrain dopamine neurons, must 
arise from other areas.

Introduction
In order to obtain all nutrients necessary for survival, organisms need to make adaptive food 
choices based on their homeostatic needs. For example, when an organism’s body senses a 
shortage of a certain nutrient, it may, consciously or not, choose foods that will replenish this 
need. Of all the nutrients, a deficiency in sodium is one of the strongest homeostatic drives 
known in animals, evoking intense cravings for salty foods after salt deprivation, which 
has been consistently reported in a wide range of species1,2. Although sodium is abundant 
in modern Western diets, it is relatively scarce in natural resources, which has perhaps 
contributed to the development of this homeostatic drive. 
 A remarkable observation that illustrates this innate drive for sodium is that rats 
normally experience a hypertonic sodium solution as aversive, but that this solution is 
experienced as positive and consumed in high amounts when rats are low on sodium, a 
phenomenon known as salt appetite1-4. Such a switch in the experience of a flavor from 
aversive to appetitive, driven by a homeostatic need, is a prime example of how adaptive the 
interaction between sensory and reward systems can be in order to maintain homeostasis 
and ensure survival. Elucidating the mechanisms that underlie this switch may therefore 
provide interesting insights into the flexibility of brain circuits that mediate reward.
 A variety of brain areas has been shown to be involved in salt appetite. Not 
surprisingly, this includes brain structures involved in the sensory processing of taste, 
such as the parabrachial nucleus5 and the nucleus of the solitary tract6,7. Other brain areas 
implicated in salt appetite are the lateral and paraventricular nucleus of the hypothalamus, 
the preoptic area, the subfornical organ, the central amygdala and the bed nucleus of the 
stria terminalis (for a review see ref. 8). Given its role in processing rewarding and aversive 
stimuli9,10, a logical candidate for the mediation of salt appetite is the mesocorticolimbic 

dopamine (DA) system, consisting of DA neurons in the ventral tegmental area (VTA) 
projecting to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). However, 
data about the involvement of this circuit in salt appetite has been inconclusive. On the one 
hand, a total ablation of the VTA11 or DA terminals in the entire brain12, as well as the infusion 
of DA receptor agonists or antagonists in the nucleus accumbens13 does not affect salt 
appetite, suggesting that motivation for salt bypasses the mesoaccumbens DA pathway. 
On the other hand, it has been observed that infusion of a delta-opioid receptor antagonist 
into the VTA decreases salt appetite13, and that a sodium-depleted state is associated 
with decreased DA transporter activity14 and altered spine morphology15 in the nucleus 
accumbens. A recent study demonstrated, using fast-scan cyclic voltammetry, that tasting 
a sodium solution evoked phasic dopamine release in the rat nucleus accumbens shell after 
sodium deprivation, but not under normal conditions16. Furthermore, this study showed that 
hindbrain neurons projecting to the VTA displayed increased c-Fos expression after salt 
deprivation. Another recent study showed that optogenetic or chemogenetic activation of 
VTA DA neurons in mice reduced intake of a high-concentration (but not low-concentration) 
salt jelly, while chemogenetic inhibition of these same neurons had no effect on salt intake17.
 In this study, we attempted to contribute to the understanding of the involvement 
of the mesocorticolimbic DA system in salt appetite. Towards this aim, we combined fiber 
photometry, behavioral pharmacology and c-Fos immunohistochemistry to study in vivo 
VTA DA neuron dynamics during sodium deficiency, and the importance of the NAc and 
mPFC, the two major output regions of these neurons, for salt appetite. By employing a 
microstructural analysis of licking behavior, we tried to discern effects of manipulations 
of the mesocorticolimbic system on the motivation for versus the appreciation of salt. 
We hypothesized that VTA DA neurons may respond differently to salty solutions during a 
normal versus sodium-depleted state, and that these changes in DA cell responsiveness are 
important for the expression of behaviors associated with salt appetite.

Results
No changes in c-Fos expression in DA nuclei after sodium deprivation
In an attempt to substantiate the findings of ref. 17, that showed that sodium deprivation did 
not change baseline activity of VTA DA neurons, we analyzed c-Fos immunoreactivity in a 
coronal slice of the midbrain that included the VTA and substantia nigra (Fig. 1a). Based on 
a typical brain slice, we created a template on which we overlayed all the other slices in order 
to perform whole-slice automated cell counting. A visual sliding-window analysis revealed 
fairly similar levels of c-Fos expression between animals in a sodium-depleted state (induced 
by treatment with the diuretic furosemide; see Materials and methods) versus a control 
state around these nuclei (Fig. 1b). Indeed, region-of-interest analysis showed no significant 
differences in the number of c-Fos positive cells in the VTA (Fig. 1c), the substantia nigra 
pars compacta (SNc; Fig. 1d), or the substantia nigra pars reticulata (SNr; Fig. 1e). Together, 
these data support the finding that baseline activity of neurons in midbrain DA nuclei was 
not altered by sodium deprivation.

Dopamine neurons encode a switch in sodium appreciation
To study how VTA DA neurons respond to the taste of salt during normal and low levels of 
sodium in the body, we injected a viral vector carrying Cre-dependent GCaMP6s into the 
VTA of TH::Cre rats and measured VTA DA neuron dynamics using fiber photometry during a 
Pavlovian conditioning task. In this task (Fig. 2a), rats learned that a 5-second auditory tone 
preceded the delivery of a nutritional solution, which was usually a tasty sucrose solution (3 
out of 4 trials), but sometimes a NaCl solution (1 out of 4 trials). We tested the responses of 
the animals to these solutions on two occasions: once in a sodium-deficient state, 24h after 
injection with furosemide, and once under baseline conditions (Fig. 2b).
 In the control state, animals vigorously licked for sucrose, but refrained from 
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licking when a sodium solution was delivered, in line with our expectations that high-sodium 
concentrations are aversive to rats. Accordingly, VTA DA neuron population activity increased 
during the consumption of sucrose, while the delivery of salt resulted in sub-baseline levels 
of DA neuron activity. This is illustrated in both an example animal (Fig. 2c, left panel) as well 
as on a group level (Fig. 2d-f, black curves). 
 In the sodium-depleted state, animals significantly increased licking for salt, while 
the number of licks for sucrose remained the same as in the control state (Fig. 2f). In line with 
this appreciation of salt, we observed increased levels of VTA DA neuron activity in response 
to salt delivery (Fig. 2e), with responses that were even higher than those after sucrose 
delivery (compare Fig. 2d and e, blue curves). Although numerically more modest than the 
changed DA neuron responsiveness to salt, we observed a lower DA neuron activation to 
sucrose during a salt-depleted state compared to the control state (Fig. 2d). Importantly, we 

Figure 1      c-Fos analysis of midbrain sections after sodium deprivation. a) Experimental design. b) 
From left to right: a coronal section of the midbrain that included the VTA and substantia nigra was 
used to create a template on which the other midbrain sections were overlayed in order to perform 
whole-slice automated cell counting – average c-Fos density in control animals (n=11) – average c-Fos 
density in sodium-depleted animals (n=10) – mean difference in c-Fos expression between controls and 
depleted animals indicating similar levels of c-Fos expression. c-e) Region-of-interest analysis showed 
no significant differences in the number of c-Fos positive cells in the VTA (c; t18 = 0.15, p = 0.88), the 
substantia nigra pars compacta (SNc; d; t18 = 0.64, P = 0.53), or the substantia nigra pars reticulata (SNr; 
e; t18 = 0.75, P = 0.46).

Figure 2     In vivo fiber photometry of VTA DA neurons during sodium depletion. a) The Pavlovian conditioning 
task that was used for in vivo fiber photometry consisted of a five-second auditory tone followed by delivery 
of a nutritional solution, being either a sucrose solution (in 75% of trials) or a NaCl solution (in 25% of trials). A 
30-second inter trial interval (ITI) separated the trial from the next auditory tone. b) Animals were tested twice; 
once after a subcutaneous (s.c.) saline injection, i.e. a control state, and once after a furosemide injection, i.e. a 
sodium-depleted state. c) Population responses of VTA DA neurons of an example animal. Shown are the control 
state (left) and sodium-depleted state (right). Reward was delivered for 5s after the first lick after cue offset (5s). 
d) Salt depletion decreased VTA DA neuron responses to sucrose. The two lines represent mean responses of all 
animals in the control (black) and the sodium-depleted (blue) state. A significant main effect of treatment was 
found (2-way repeated measures ANOVA, main effect of treatment, F1,5 = 2.110, p = 0.2060; treatment × time 
interaction effect, F1999,9995 = 0.1.788, P < 0.0001; * post-hoc test significant between 7.41 - 12.00 s post-stimulus). 
e) Mean responses of all animals to salt indicated that salt depletion increased VTA DA neuron response to salt 
(2-way repeated measures ANOVA, main effect of treatment, F1,5 = 26.45, P = 0.0036; treatment × time interaction 
effect, F1999,9995 = 2.400, P < 0.0001; * post-hoc test significant between 6.32 - 12.72 s post-stimulus). f) Number 
of licks in the first 10 seconds after sucrose or salt delivery for animals in the control (black) or sodium-depleted 
(blue) state. Salt depletion increased the number of licks for salt, but not for sucrose (2-way repeated measures 
ANOVA, main effect of tastant, F1,5 = 21.54, P = 0.0056; main effect of treatment, F1,5 = 10.74, P = 0.0220; 
treatment × tastant interaction effect, F1,5 = 19.93, P = 0.0066; post-hoc Sidak’s test, control vs depleted state: 
sucrose t5 = 0.017, P = 0.9998; salt t5 = 6.297, ** P = 0.0030).164 165



observed no changes in fluorescent activity in animals that were injected with an activity-
independent control fluorophore (Supplementary Fig. 1), indicating that the observed 
fluorescent signals were driven by neuronal activity. Furthermore, neuronal activity was not 
driven by licking per se, since during the anticipatory conditioned stimulus, we observed an 
increase in calcium activity, but not in the number of licks (Fig. 2c).
 In sum, we show that a salty solution under normal conditions is considered aversive 
by rats, as shown by the termination of licking behavior and sub-baseline levels of VTA DA 
neuron activity, but that this same solution is considered appetitive in a sodium-depleted 
state, accompanied by vigorous licking for salt and large peaks in DA neuron activity.

Inactivation of NAc, but not mPFC, diminished drinking behavior without affecting salt 
appetite
To investigate the behavioral structure of salt appetite, we assessed intake of a 0.45M NaCl 
solution, as well as intake of demineralized water, by using mechanical lickometers present 
in the animals’ home cages, which measured the numbers of licks per 12s bins. To gain 
insight into the appetitive components of sodium appetite, we performed a microstructure 
analysis of licking behavior, calculating the number of licking bouts that animals made, as 
well as the size of each of these bouts (Fig. 3a). As expected, animals that were brought in 
a sodium-depleted state consistently consumed more of the sodium solution, which was 
driven by an increase in the frequency of licking bouts as well as the size of a licking bout 
(see Fig. 3 and 5). Note that these animals had ad libitum access to demineralized water, but 
had no access to salt in the 24h prior to the measurements.
 To study the role of the two main VTA DA neuron output regions, the mPFC and NAc, 
in the regulation of salt appetite, we pharmacologically inactivated the mPFC and the NAc 
using micro-infusions of a mixture of the GABA receptor agonists baclofen and muscimol 
(B/M). Rats were brought in a sodium-depleted or a control state for 24h, after which they 
received infusions with either B/M or saline. Subsequently, animals received a 0.45M NaCl 
solution, in addition to a bottle of demineralized water that was already present in the cage.
 We first assessed salt appetite upon mPFC inactivation (Supplementary Fig. 2a). 
A two-way repeated measures ANOVA revealed increased consumption of the sodium 
solution in sodium-depleted animals (main effect of state), which was driven by an increase 
in the frequency of licking bouts as well as by the size of these bouts (Fig. 3b, left panels). 
Inactivation of the mPFC, however, did not impact consumption of the sodium solution (Fig. 
3b, left panels), nor of demineralized water (Fig. 3b, right panels), as the ANOVA revealed no 
main effect of B/M or B/M × state interaction effect.
 Inactivation of the NAc (Supplementary Fig. 2b) significantly decreased sodium 
intake, as the two-way repeated measures ANOVA revealed a main effect of B/M on the licks 
of salt, which was driven by a decrease in the number of licking bouts but not by the size of 
these bouts (Fig. 3c, left panels). However, in a sodium-depleted state, animals still drank a 
substantial amount of salt, even after B/M infusion (on average 323 ± 148 s.e.m. licks in the 
1h recording session). Indeed, there was a significant main effect of sodium depletion (state) 
on the number of sodium licking bouts, and a trend towards an effect of sodium depletion 
on the number of licks and bout size. Importantly, no B/M × state interaction effects were 
observed, indicating that the effects of sodium deprivation on salt intake were still present 
after NAc inactivation, although numerically more modest.
 Licking for water in sodium-deprived and control rats also decreased upon infusion 
of B/M into the NAc, as a significant main effect of B/M was observed (Fig. 3c, right panels). 
In contrast to licking for salt, water consumption was almost fully abolished in both groups 
of rats (on average 4 ± 1-2 s.e.m. licks in the 1h recording session), without a main effect of 
state or B/M × state interaction effect. Collectively, these data show that inactivation of the 
NAc decreases intake of salt, but not as strongly as for water.
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Figure 3      Effects of pharmacological inactivation of VTA target regions on salt appetite. 
a) Microstructure analysis of licking behavior in an example animal once in a control state (left) and once 
in a sodium-depleted state (right). At time = 0 min the salt bottle was given back to the animal and its 
drinking behavior was analyzed as number of licks (grey line for water intake, black line for salt intake). 
On the upper part of the graph, bout analyses for salt and water intake shows frequency and size of 
the bouts. b) Effect of mPFC inactivation on salt intake (left) and water intake (right). No main effect of 
mPFC inactivation by baclofen and muscimol (B/M) of interaction effect was detected. c) Effect of NAc 
inactivation on salt intake (left) and water intake (right). Inactivation of the NAc decreased sodium intake, 
which was driven by a decrease in the number of licking bouts. A significant main effect of state was 
detected for the number of sodium licking bouts, and a trend towards an effect of sodium depletion on 
the number of licks and bout size. No B/M × state interaction effects were observed. Inactivation of the 
NAc also abolished water consumption, as a main effect of state was found on the number of water licks, 
driven by effects on the number of bouts and licks per bout. ** P < 0.01, * P < 0.05
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NAc inactivation abolished sucrose and water intake, even during hunger and thirst
Since we observed that NAc inactivation almost fully abolished water, but not salt intake, 
we  next examined the effects of NAc inactivation on food intake during hunger, and later 
also assessed the effects of NAc inactivation on water intake during thirst. We used the 
same experimental design as we had used to assess salt appetite, but instead monitored 
the intake of a 5% sucrose solution in the home cage after food restriction. As such, animals 
had the choice between a bottle of sucrose (which was delivered to the animal right after 
the infusion) and a bottle of tap water (which was already present in the home cage of the 
animals). Animals in the control state, who were ad libitum fed, had access to regular chow 
before and during the experiment. 
 We observed a significant B/M × food restriction interaction effect on the number of 
licks the animals made for sucrose (Fig. 4a, left panels). Post-hoc tests indicated that this was 
driven by a significant increase in the number of licks for sucrose upon food restriction after 
saline infusion, but not after B/M infusion. This effect seemed mainly driven by a decrease 
in the number of licking bouts, as we observed a main effect of B/M on this parameter, but 
not on the number of licks per bout. In contrast to baseline sucrose consumption, the total 
intake of water was extremely low (Fig. 4a, right panels), perhaps because the animals’ water 
homeostasis was relatively normal (compared to after sodium deprivation) and the animals 
had continuous access to water. Together, these data demonstrate that NAc inactivation 
reduced consumption of sucrose, and that this is independent of the energy balance of the 
animal.
 Similar effects of NAc inactivation were observed on the intake of water during thirst 
(Fig. 4b). Water restriction increased the consumption of water (main effect of restriction on 
licks and the number of licking bouts), and B/M infusion into the NAc decreased overall 
water intake (significant main effect of B/M on number of licks and number of bouts; 
trend towards a main effect on the licks per bout). Furthermore, a significant B/M × water 
restriction interaction effect was observed on the number of licks for water and the number 
of licking bouts, which was driven by an increase in licking after saline infusion but not after 
B/M infusion. This indicates that pharmacological inactivation of the NAc abolished water 
intake, even when animals were thirsty.
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Figure 4      NAc inactivation reduced sucrose and water intake. 
a) Sucrose (left) and water (right) intake was analyzed when animals were in a food restricted state (red) 
or in an ad libitum fed state (grey). A significant B/M × food restriction interaction effect on the number of 
licks for sucrose was found. Post-hoc tests Sidak’s test revealed a significant increase in the number of 
licks due to food restriction after saline infusion (t5 = 4.77, P = 0.010), but not after B/M infusion (t5 = 0.48, 
P = 0.877). A decrease in the number of licking bouts was found, which indicates that the interaction 
effect was mainly driven by a decrease in motivation for sucrose. Food restriction increased the number 
of licks for sucrose, driven by an increase in licks per bout. Water intake was extremely low and no 
significant effects could be detected on water licking behavior. 
b) Water licking behavior was analyzed after water restriction. Water restriction increased the number of 
water licks, driven by an increase in number of licking bouts. NAc inactivation decreased overall water 
intake, as a significant main effect of B/M on the number of licks and the number of bouts were detected, 
as well as a trend towards a main effect of licks per bout. A significant B/M × water restriction interaction 
effect was observed of the number of licks for water which was driven by an increase in licking after 
saline infusion (t5 = 10.29, P = 0.0003) but not after B/M infusion (t5 = 1.87, P = 0.23) as revealed by post-
hoc Sidak’s tests.  There was also a significant B/M × water restriction interaction effect on the number 
of bouts, driven by an increase in bouts after saline (t5 = 7.24, P = 0.0016), but not B/M (t5 = 1.39, P = 
0.40) infusion. *** P < 0.001, ** P < 0.01, * P < 0.05

Figure 5      Effects of DA receptor blockade in the NAc on salt appetite. The effects of infusion of the DA 
receptor antagonist α-flupenthixol (Flup) on salt (left) and demineralized water (right) intake in rats in a 
sodium-depleted (blue) and control (grey) state. Infusion of α-flupenthixol did not affect salt intake, nor 
the number of bouts or the number of licks per bout. Water intake was significantly decreased by infusion 
of the DA receptor antagonist, driven by decreases in both the number of bouts and licks per bout. 
**** P < 0.0001, ** P < 0.01, * P < 0.05
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DA receptor antagonism in the nucleus accumbens does not alter salt appetite
We next repeated the salt intake experiment in these animals, but now infused a high dose (25 
µg/side) of the DA receptor antagonist α-flupenthixol into the NAc, to study the importance 
of DAergic neurotransmission in the NAc for salt appetite. We observed that α-flupenthixol 
infusion did not affect salt intake, nor did it affect the number of licking bouts or licks per bout 
(Fig. 5, left panels). However, we did observe a significant effect of α-flupenthixol infusion 
on water intake (driven by both a decrease in the number of licking bouts and the size of 
these licking bouts; Fig. 5, right panels). These data suggest that the suppressing effects of 
pharmacological inactivation of the NAc on salt intake under sodium-depleted conditions is 
not driven by DAergic neurotransmission.

Discussion
In our study, we demonstrated that VTA DA neurons in rats encoded the appreciation of a 
salty solution, dependent on the homeostatic state of the animal. As such, tasting salt under 
normal circumstances resulted in sub-baseline levels of DA neuron activity, in accordance 
with this solution being considered aversive. Conversely, salt tasting after sodium depletion 
evoked vigorous licking for the solution, along with peaks in DA neuron activity that were even 
larger than the peaks previously observed during sucrose tasting. This finding is consistent 
with a recent study that demonstrated altered DA release in the nucleus accumbens shell 
in response to a NaCl solution after salt deprivation16. Another study17 recently showed that 
sodium deprivation did not affect baseline activity of VTA DA neurons, ex vivo nor in vivo, 
in accordance with our finding that c-Fos expression was not altered in midbrain DA nuclei 
after sodium deprivation. These findings suggest that sodium deprivation does not simply 
disinhibit the whole DA system, but that the changes in DA neuron activity are dependent on 
presentation of the salient salt solution.
 Several studies have suggested that during free-intake paradigms, the frequency of 
licking bouts (i.e., how often the animal initiates drinking) is a measure of incentive salience, 
or the motivation to obtain reward, whereas the bout size (i.e., the length of a drinking period) 
informs about the hedonic impact, or appreciation of reward18-21. We therefore performed 
a microstructure analysis of salt licking behavior after pharmacological inactivation of 
the NAc and demonstrated that the decrease in salt intake was driven by a reduction in 
the number of licking bouts, but not the size of these bouts. This finding was replicated 
in the sucrose intake experiment, where we observed that NAc inactivation reduced the 
number of sucrose licking bouts, but not the number of licks within these bouts. Together, 
this suggests that the motivational aspect of salt appetite is reduced by inactivation of the 
NAc, just as is the motivation for calories. In contrast to these findings, NAc inactivation did 
have a significant effect on the size of the licking bouts for water, a liquid that has a neutral 
taste, suggesting that the absence of an effect of NAc activation on the sucrose and salt 
licking bout size is related to its taste, and that taste acts as the conditioned stimulus for 
the homeostatic need. In fact, NAc inactivation almost fully suppressed water intake in all 
of the experiments, even when the animals were thirsty. The observation that this was not 
the case for salt and sucrose consumption suggests that the attenuated water intake was 
not the result of a general behavioural impairment, for example because of motor deficits. In 
contrast to inactivation of the NAc, we found no effects of inactivation of the mPFC on salt 
appetite.
 After pharmacological blockade of NAc DA receptors using α-flupenthixol, we 
observed no effects on salt appetite. Interestingly, we did again observe an effect of the DA 
receptor antagonist on water intake during this experiment, just as after inactivation of the 
NAc with B/M. This suggests that the motivation for salt does not require accumbens DA, but 
that this is not necessarily the case for other types of motivation. The lack of effect of NAc DA 
receptor blockade on salt appetite is somewhat surprising, given that mesoaccumbens DA is 
considered a driving force behind motivation for rewards22,23. Furthermore, previous studies 

have reported alterations in the mesolimbic dopamine system and its inputs after sodium 
deprivation, both morphologically15 and functionally16. Our findings are not necessarily 
conflicting with these data, as we also showed that VTA DA neuron dynamics during salt and 
sucrose tasting are dependent on the sodium balance of the animal. This suggests altered 
reward processing after sodium deprivation, which may logically also affect downstream DA 
release and hence morphological and structural changes to downstream areas. However, 
we do show that mesolimbic DA neurotransmission is not necessary for the behavioral 
expression of salt appetite.
 That said, the finding that a switch in salt appreciation upon a change in body sodium 
levels is encoded by VTA DA neurons, but that blockade of DA receptors in one of its most 
important downstream regions does not hamper salt appetite may seem counterintuitive. A 
possible explanation is that behavioral adaptation to a shortage in sodium is so crucial, since 
it can be a prerequisite for survival, that it is redundantly coded in the brain, and thus relies 
on a variety of brain regions. For example, the VTA also projects to the subthalamic nucleus, 
which projects to the substantia nigra and the ventral pallidum, which again sends efferents 
to the substantia nigra, lateral hypothalamus, lateral pre-optic area, pedunculopontine 
nucleus, and brainstem24. All these regions form a complex network of the ventral basal 
ganglia, which could function as backup for dysfunction of the NAc. Furthermore, the VTA is 
known to directly project to the lateral hypothalamus, also a key region of the reward system, 
which forms a neural circuit with the parabrachial nucleus and the nucleus of the solitary 
tract, which has shown to be involved in the sensory and motor aspects of feeding25,26.
 Altogether, we have used a multidisciplinary approach, including c-Fos 
immunohistochemistry, fiber photometry and behavioral pharmacology, to assess the role 
of the mesocorticolimbic DA system in salt appetite. We have substantiated findings from 
earlier studies regarding the role of VTA neurons in salt appetite, and provide novel insights 
into the role of its target regions in this behavior. We show that the NAc, but not mPFC, is 
essential for the behavioral expression of salt appetite by mediating its motivational, but 
not hedonic, component. This role of the NAc in salt appetite is independent of DA, although 
we show that DA neurons themselves do encode the appreciation of salt through reward 
prediction error.

Methods
Animals
All experiments were approved by the Animal Ethics Committee of the Utrecht University, 
and were conducted in agreement with Dutch (Wet op de Dierproeven, revised 2014) and 
European regulations (Guideline 86/609/EEC; Directive 2010/63/EU).

A total of 46 male rats were used in the experiments. Male Long-Evans rats (Rj:Orl; 
Janvier Labs, France) were used for the micro-infusion experiments (n = 14), male Wistar 
rats (Crl:WU; Charles River, Germany) were used for c-Fos analysis (n = 22), and TH::Cre 
transgenic rats (bred in-house by crossing heterozygous TH::Cre+/- male rats with wild type 
Rj:Orl mates) were used for fiber photometry (n = 6 TH::Cre+ injected with DIO-GCaMP6s and, 
n = 4 TH::Cre- injected with eYFP). All rats weighted ~250 g at the start of the experiments, 
were individually housed under controlled temperature (20°C) conditions, with a 12h light/
dark cycle (lights off at 7:00 a.m.), and received a wood block as cage enrichment. When not 
being tested, animals had ad libitum access to demineralized water and a 0.45 M sodium 
chloride solution (or a 5% sucrose solution, prior to the sucrose intake experiment) and 
standard chow (Special Diet Service, UK) in the home cage. Preceding sodium intake test 
days, animals were salt deprived, during which they only had access to demineralized water 
and a sodium-deficient chow (Teklad Custom Diet, Envigo). Preceding the sucrose intake 
test days, animals were food restricted, during which they had no access to chow or the 
sucrose solution for 24 h.
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Surgeries
Anesthesia was induced using a mixture of 0.315 mg/kg fentanyl and 10 mg/kg fluanisone 
(Hypnorm, Janssen Pharmaceutica, Belgium) that was injected intramuscular. Animals 
were placed in a stereotaxic apparatus (David Kopf Instruments, USA) and an incision was 
made along the skull midline. 
 For fiber photometry experiments, the same surgical procedure was applied as 
described previously10. In brief, TH::Cre rats were injected with 1 μl of AAV5-FLEX-hSyn-
GCaMP6s (University of Pennsylvania Vector Core) at a titer of 1 × 1012 particles/ml 
unilaterally into the right VTA (−5.40 mm AP, ±2.20 mm ML from Bregma, at an angle of 10°, 
and −8.90 mm DV from the skull). A 400 µm implantable fiber was lowered to 0.1 mm above 
the injection site and attached with dental cement.

For micro-infusion experiments, 26-gauge stainless steel guide cannulas (Plastics 
One, USA) were implanted above the NAc (two single cannulas; +1.20 mm anteroposterior 
(AP), ±2.80 mm mediolateral (ML) from Bregma, at an angle of 10°, and the guide was lowered 
to -6.80 mm dorsoventral (DV) from the skull) or the mPFC (one double cannula with a width 
of 1.2 mm; +3.20 mm AP, ±0.60 mm ML from Bregma, and the guide was lowered to -2.60 
mm DV from the skull). Cannulas were secured to the skull with screws and dental cement, 
and dummy injectors were placed inside the cannulas to prevent blockage. Single injectors 
for the NAc protruded 0.5 mm beyond the guides (targeting -7.30 mm DV from the skull) and 
double injectors for the mPFC protruded 1 mm beyond the guides (targeting -3.50 mm DV 
from the skull).

To prevent dehydration of the rats, they were given 10 mL of saline subcutaneous 
(s.c.) after surgery. Starting on the day of surgery, rats were given carprofen as analgesia 
(s.c. injection of 5 mg/kg per day for 3 days). All rats were allowed to recover from surgery 
for at least 7 days before behavioral testing began.

Sodium deprivation
Before the sodium deprivation procedure, all cages were cleaned to prevent the rats from 
repleting their sodium levels by eating their own feces. Sodium depletion was induced by 
an s.c. injection of the diuretic drug furosemide (20 mg/kg dissolved in sterile H2O, given 
in 2 injections of 10 mg/kg 1 hour apart). Control animals received s.c. saline injections. 
In the 24h that followed, sodium-depleted animals received sodium-free chow, and control 
animals received regular chow. In the first three hours after the first furosemide injection, 
animals had no access to water, to confirm success of the procedure by observing a 
body weight loss. After these 3 hours, all animals received demineralized water, which 
was especially heavily consumed by the animals that were previously injected with 
furosemide. 24 hours after the first furosemide injection, animals were given a bottle 
containing a 0.45M NaCl solution, and intake of this solution (as well as intake of the 
demineralized water, which was already present in the cage) was monitored for 1h using 
mechanical lickometers that were present in the home cage. Animals were always tested 
in a counterbalanced fashion, so that half of the animals were first tested in a control state, 
i.e., 24 h after s.c. saline injection, and the other half in a sodium-depleted state, i.e., 24 
h after s.c. furosemide injection. Drinking behavior was assessed as cumulative intake 
(number of licks), number of licking bouts, and licks per licking bout for both the intake of 
demineralized water and the 0.45M NaCl solution. A minimum of 5 licks was considered a 
bout, which ended when the animals did not lick for at least 1min.

In vivo fiber photometry
Technical details about our fiber photometry setup have been published elsewhere10. In 
brief, animals were injected with a Cre-dependent GCaMP6s in the right VTA, and a 400 µm 
fiber was secured 0.1mm dorsal of the injection site. Animals were connected to a 400 µm 
core fiber optic patch cable through which lock-in amplified blue LED light was delivered. 

Emission light was captured with a photoreceiver, digitized, and dF/F0 values were 
computed with F0 being defined as the mean of the middle 50% of values in the 30 seconds 
before each time point F.

Each rat was tested on the behavioral task twice, once in a salt-depleted state 
and once in a control state, and the task was conducted in operant conditioning chambers 
(MedPC Inc., USA). The chambers were equipped with one optical lickometer (delivering both 
solutions through the same spout), and on the other side of the chamber a house light and 
auditory tone generator. All animals were food restricted for 24h before the measurement, to 
increase the motivation for sucrose (making sure the animals lick during every trial). 

 In the task, a 5-second tone initiated the trial, and the first lick after tone offset 
triggered the fluid pump, which delivered a droplet of the solution over a period of 5s. If the 
animal did not make a lick within 5s after tone offset, no reward was obtained and the inter-
trial interval of 30s commenced. If the animal did make a lick within 5s after tone offset, the 
pump delivered a 0.88M sucrose solution in 75% of the trials and a 0.30M NaCl solution in 
25% of the trials (in random order). After the 5-second liquid delivery, a 30-second inter-trial 
interval separated the current trial from the onset of the next trial. No cue lights were used 
and the house light was turned on continuously to prevent the signal to be contaminated 
by lights from the environment. Individual trial responses were time-locked to the 5-second 
tone that started the trial and mean dF/F of trial responses to sucrose and of trial responses 
to sodium was calculated. The number of licks during the trials was assessed using the 
lickometers that were monitored by medPC software. The task continued until the animal 
had made at least 80 trials.

Microinfusions
For the infusion experiments, n = 7 (NAc) and n = 8 (mPFC) rats were used. Animals were 
habituated to the infusion procedure by infusing saline (0.5 μl/side) the day before the first 
experiment. Rats were brought in a salt depleted state or in a control state, as described in 
the paragraph above, and 24 h later they received infusions with saline (1 μl/side for the NAcc, 
0.5 μl/side for the mPFC) or a mixture of baclofen (1nmol; Sigma-Aldrich, The Netherlands) 
and muscimol (0.1 nmol; Sigma-Aldrich, The Netherlands) dissolved in saline (1 μl/side for 
the NAcc, 0.5 μl/side for the mPFC). Furosemide vs saline injections and baclofen-muscimol 
vs saline infusions were performed in a Latin Square repeated measures design. Drugs were 
infused at a rate of 0.5 μl/min, and the injectors were left in place for an additional 30 s after 
the infusion was complete to allow for diffusion of saline/baclofen-muscimol into the brain. 
After the infusion procedure, animals were placed back in their home cage, and a bottle 
with a 0.45 NaCl solution was given 5 minutes later. In the dopamine receptor antagonist 
infusion experiment, we used the same experimental procedure as in the pharmacological 
inactivation experiments, except that 25 µg of cis-(Z)-α-flupenthixol dihydrochloride (Sigma-
Aldrich, The Netherlands) was infused, dissolved in 0.5 µl saline.

c-Fos analysis
For c-Fos analysis, 11 animals were brought in a salt-deprived state as described in the 
procedure above, and 11 animals were used as control animals. 48 hours after the first 
furosemide injection, all 22 rats received an i.p. injection of sodium pentobarbital and 
perfused with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA) 
in PBS. After extraction, brains were post-fixated in 4% PFA in PBS at 4 °C for 24 h, and 
stored in a 30% sucrose in PBS solution at 4 °C. For immunohistochemical quantification of 
the number of activated neurons, brains were stained for the immediate early gene c-Fos. 
Brain slices (50 μm) were blocked in 3% normal goat serum (NGS) and 0.5% Triton-X-100 
in PBS. Slices were incubated overnight in primary antibody rabbit anti-c-Fos (1:1000, Cell 
Signaling) in 3% NGS in PBS at room temperature. Subsequently, slices were incubated 
for 2 h in biotinilated antibody goat anti-rabbit (1:200, Vector labs) in 3% NGS in PBS, and 
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afterwards in Biotin/Avidin (1:1000, Vectastain) in PBS for 1 h. This complex was visualized 
by exposing the slices for 5 min to a solution of liquid DAB (3,3’-Diaminobenzidine, Dako) 
and 10% nickel ammonium sulphate. All sections were dehydrated using increasing series 
of ethanol, cleared in xylene and coverslipped with Entallan (Merck Millipore). Sections 
were photographed by a brightfield microscope with a 10X lense (AxioImager M2). Slices 
comprising the VTA were manually aligned in illustrator, and ImageJ (Version 1.48 v) was 
used to extract the coordinates of c-Fos positive neurons by applying a bandpass filter 
over the Fourier-transformed image, followed by a search for maximum intensity points. 
Heatmaps of c-Fos expression were generated based on the coordinates of the c-Fos 
positive cells using MATLAB (The MathWorks Inc., version R2014a).

Exclusion criteria
One animal was excluded from c-Fos analysis because brain slices were not of sufficient 
quality.  One additional animal was excluded from c-Fos analysis because the brain slices 
did not show any expression. One animal was excluded from the sucrose intake (after food 
restriction) experiment, water intake (after water deprivation) experiment and dopamine 
receptor antagonist infusion experiment, because it was suspected to develop diabetes (it 
drank excessive amounts of water and sucrose water, and the bedding was continuously 
wet).

Data availability
The datasets generated during the current study are available from the corresponding author 
on reasonable request.

Data analysis and statistics
Data analysis was performed with MATLAB, statistical analysis using GraphPad Prism 
(GraphPad Software Inc., version 6.0). Statistical comparisons were made using a two-tailed 
t-test for a single comparison and a (repeated measures) ANOVA was used for multiple 
comparisons, followed by a t-test with Šidák’s multiple comparisons correction when a 
significant interaction effect (P < .05) was found between the two factors of the ANOVA. Bar 
graphs represent the mean ± standard error of the mean. In all figures: ns not significant, #P 
< 0.1, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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SUPPLEMENTARY FIGURE 1

In vivo fiber photometry of VTA neurons from animals injected with a YFP control fluorophore.   

An activity-independent control fluorophore was injected into the VTA of control animals (n=4) and 
in vivo fiber photometry indicated no changes in fluorescent activity in these controls (lower panel). 
Upper panel shows the average licking rate of the animals. Line and shading represent mean and 
standard error of the mean, respectively.

SUPPLEMENTARY FIGURE 2

Histological verification of guide cannula placement.   

Correct placement of the guide cannulas used for local infusions was verified for all animals in which 
the mPFC (a) or the NAc (b) was targeted. Rat 1 from (b) was excluded from figures 4 and 5 because 
it developed diabetes.

CH
APTER 8   RO

LE O
F DO

PAM
IN

E IN
 SALT APPETITE

176 177



CHAPTER 9

Insensitivity to monetary losses 
in anorexia nervosa patients

Jeroen P.H. Verharen
Unna N. Danner
Sabrina Schröder
Emmeke Aarts
Annemarie A. van Elburg
Roger A.H. Adan

Manuscript in preparation

Highlights

• We analyzed data from a large cohort of anorexia 
nervosa patients performing the Iowa Gambling 
task

• Fitting the data to a prospect utility function model 
demonstrates that anorexia nervosa patients have 
a reduced sensitivity to monetary losses

• This suggests that anorexia nervosa patients have 
impairments in value-based decision making
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Anorexia nervosa patients consistently demonstrate impairments in 
laboratory measures of value-based learning and decision making. The 
mechanisms that underlie these changes have been elusive, but recent 
data suggest alterations in the dopamine system related to reward-based 
decision making. Here, we fit data of anorexia nervosa patients and healthy 
controls performing the Iowa Gambling task to a computational model 
based on prospect utility theory, and show that anorexia nervosa patients, 
in contrast to healthy controls, do not exhibit loss aversive behavior. This 
finding provides fundamental insights into the decision making capacity 
of anorexia nervosa patients, suggesting alterations in the mechanisms 
involved in value processing.

Introduction
A growing body of evidence suggests that anorexia nervosa (AN) patients have impairments 
in value-based learning and decision making1-8. This is not only inferred from the clinical 
presentation of the disease, which includes inflexibility and distorted goal pursuit6,9, but 
also from performance in several standardized laboratory tests for decision making. For 
example, AN patients show impairments in set shifting10,11, show increased capacity to delay 
reward12, and demonstrate reduced problem solving capacity13 (for a systematic review see 
ref. 14). In line with these findings, alterations in the dopamine system, an important hub for 
reward-based learning and decision making15,16, have been reported in AN patients17,18. For 
example, reward prediction errors, neural signals encoded by midbrain dopamine neurons 
during the delivery of unexpected reward or punishment, have been shown to be elevated in 
AN patients19.
 One way to assess decision making is through the Iowa gambling task (IGT)20-22. 
The IGT measures behavioral responses to monetary gains and losses by letting participants 
choose between four decks of cards that each differ in the amount of money one can win 
or lose per card (Fig. 1a,b). Two decks give a high financial yield ($100/card) and therefore 
seem advantageous. However, these decks also lead to an occasional loss of a large sum of 
money, which results in a net loss when chosen exclusively. The two other decks give a more 
modest payout ($50/card) but also yield a lower amount of losses, and are therefore the 
advantageous option on the long term. In order to choose the profitable decks and thereby 
win the highest amount of money at the end of the session, one must explore each of the 
choice options, integrate the profits and losses associated with each of the decks into an 
expected reward value, and make decisions based hereon. By assessing choice behavior 
of participants and comparing this between different groups, one may infer alterations in 
decision making behavior under pathophysiological conditions, including AN. Indeed, over 
the years, many studies have attempted to demonstrate decision making deficits in AN 
patients by utilizing the IGT. A recent systematic meta-analysis that compared those studies 
showed a consistent lower IGT net score in symptomatic AN patients as compared to healthy 
controls23, providing further evidence for impairments in value-based decision making in AN.
 IGT performance is usually assessed by plotting the fraction of choices for the 
advantageous decks over the session. Although this metric is useful to assess whether 
learning takes place within a session, this measure does not directly inform about which 
of the underlying component processes is altered. In recent years, several attempts have 
been made to extract the different components of value-based decision making from the 
IGT data by means of computational trial-by-trial analyses24. One study systematically 
compared a wide range of reinforcement learning models in their ability to explain choice 
behavior in the IGT and demonstrated that a model based on prospect utility theory was 

superior in this aspect25. This theory26-28 states that people are no perfect rational decision 
making agents, in the sense that under uncertainty, the subjective experience of reward is 
not linearly proportional to the actual received reward (Fig. 1c, inset). Rather, subjective 
reward is thought to be concave to the actual reward (and convex for losses), so that winning 
$200 has a lower impact on behavior than winning $100 twice. Furthermore, the prospect 
utility value function is asymmetric for negative and positive values, so that, for most people, 
losses weigh heavier than gains in terms of their impact on choice behavior. In other words, 
most people are loss averse.
 Here, we use computational trial-by-trial analysis of IGT data of a reasonably large 
cohort of AN patients and healthy controls in an attempt to elucidate the basic computational 
processes that underlie the impaired performance of AN patients in the IGT. By fitting the 
data to a large set of reinforcement learning models, we confirm that prospect utility is the 
best descriptor of behavior in the IGT. After comparing the computational model coefficients 
between patients and controls, we demonstrate that AN patients, in contrast to healthy 
controls, do not exhibit loss aversive behavior.

Methods
Participants
For this study, n = 115 participants were included, from which n = 60 were diagnosed with 
AN and were symptomatic at the time of testing (Table 1). The second cohort included 216 
participants, all of whom were diagnosed with AN and symptomatic at the time of testing. 
Disease classification was performed by eating disorder experts (all medical doctors) 
according to the DSM-V criteria. All participants were recruited at the Altrecht Clinic for 
Eating Disorders Rintveld, a specialized center for eating disorders in Zeist, The Netherlands.

Task
A computerized version of the original IGT20 was used to assess decision-making ability. 
The IGT simulates real-life decision making under uncertain circumstances with a conflict 
between immediate reward and delayed punishment so that participants have to make 
advantageous choices. Participants are instructed to maximize their profit by choosing one 
card at a time from one of four card decks. After each choice (100 in total), a specific amount 
of money is awarded while at certain times, the participant also loses a fixed amount of 
money, resulting in a net loss. Decks A and B are considered disadvantageous, because 
they contain high gains but also high losses, disclosing a net value of minus 250 dollar per 
10 cards. These decks have the same overall net loss but differ in frequency and degree 
of punishment. With smaller gains but also smaller losses, decks C and D are considered 

Table 1 - Demographics of participants. Numbers indicate mean (std). 
P-values denote significance in an unpaired t-test. 

Level of education is an arbitrary measure ranging from 1 (primary school not finished) to 7 (university)
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to be advantageous in the long run, disclosing a net value of plus 250 dollar per 10 cards. 
These two decks also display the same overall net loss while differing in frequency and 
degree of punishment. Traditionally, decision making is examined by dividing the 100 trials 
in five blocks of 20 card choices, also referred to as the learning effect during the task. 
For each block, a net score is calculated by the difference in number of choices between 
the advantageous and disadvantageous decks: [(C+D) - (A+B)]. An impairment in decision-
making ability is characterized by a lack of improvement of performance over time.

Modeling analysis
In the modeling analysis, we tested 8 different reinforcement learning models, all as 
described by ref. 25 (see also refs. 29 and 30 for a comparison of IGT models). All of these 
models assume that participants make decisions by a process that is reiterated on every 
trial (Fig. 1c), and comprises 1) a utility function, that transforms the gains or losses from 
that trial into a net subjective value, or ‘utility’, 2) updating the value representations of the 
decks on the basis of this subjective value, and 3) make a choice between the four decks 
by comparing their expected values. In each of these three steps, two different types of 
equations were tested, so that all possible combinations of equations resulted in a total 
of 23 = 8 models. For the utility function, an equation based on prospect utility theory was 
tested and an equation based on expected utility theory. For the value updating function, 
a delta learning rule was tested (i.e., the Rescorla-Wagner model; only updates the chosen 
deck based on reward prediction error) as well as a decay-reinforcement rule (which also 
discounts the value of a deck when it is not chosen). For the choice function, a Softmax 
equation was used, one which was based on the assumption that choice stochasticity 
(i.e., the explore/exploit trade-off parameter) was stable within a session (trial-independent 
choice rule), and one based on the assumption that choice stochasticity may change over a 
session (trial-dependent choice rule; e.g., that a participant could start with an exploratory 
approach, but may become more deterministic in a later stage of the task). 
 The trial-by-trial data of participants was fit to each of these models, and random 
effects model selection31 was performed using the individual log-model evidence estimates 
with the function ‘spm_BMS’ in the Matlab toolbox SPM 12 (Wellcome Trust Centre for 
Neuroimaging). The model that was the best descriptor of IGT performance was model 
#5 (highest PXP; Table 2), which was the model based on prospect utility function, a delta 
learning rule and a trial-dependent choice rule. Behavior of participants in this model was 
described on the basis of 4 parameters: 1) loss aversion parameter γ, which is the steepness 
of the prospect utility value function for a negative outcome compared to a positive outcome, 

Figure 1: Iowa gambling task and computational model
a. Task design. 
b. Example data of a participant that starts with an exploratory approach, but chooses more exploitati-
ve in a later stage of the session. 
c. We fit a computational model to the data to mathematically dissect the different components of 
value-based decision making in the IGT. 
d. Interpretation of model parameter values. 
e. We compared healthy controls (HC) with anorexia nervosa (AN) patients.

Table 2: Bayesian model selection (n = 115 participants) indicated that a model based on prospect utility 
function explained the highest amount of choices as compared to the other reinforcement learning models.
Abbreviations: LL, log likelihood; AIC, Akaike Information Criterion; XP, exceedance probability; PXP, 
protected exceedance probability.

M Utility Updating Choice Aggregate LL Aggregate AIC XP PXP

1 Expected utility Delta learning rule Trial-dependent 
consistency

-12957.1 26604.2 0.000 0.000

2 Trial-independent 
consistency

-13082.7 26855.4 0.000 0.000

3 Decay-
reinforcement 
learning rule

Trial-dependent 
consistency

-19121.5 38932.9 0.000 0.000

4 Trial-independent 
consistency

-12048.6 24787.3 0.114 0.114

5 Prospect utility Delta learning rule Trial-dependent 
consistency

-12004.9 24929.8 0.861 0.861

6 Trial-independent 
consistency

-13353.7 27627.4 0.000 0.000

7 Decay-
reinforcement 
learning rule

Trial-dependent 
consistency

-11914.6 24749.2 0.021 0.021

8 Trial-independent 
consistency

-11811.1 24542,2 0.005 0.005

CH
APTER 9   LO

SS IN
SEN

SITIVITY IN
 AN

O
REXIA N

ERVO
SA

182 183



2) feedback sensitivity parameter α, which is the exponent of the prospect utility value 
function, 3) learning rate A, which reflects the strength with which a single outcome affected 
the value representation of the chosen deck, and 4) explore/exploit parameter c, indicating 
how choice stochasticity changed over the session. Fig. 1d shows an overview of the model 
parameters and the interpretation of their values.
 For the ‘winning’ computational model (adapted from ref. 25), the value function 
was given by

u
x

x
for net gains

| | for net lossest
t

t
λ

=
−

⎧
⎨
⎪

⎩⎪

α

α

Here, u is the utility on trial t, based on the net monetary outcome xt. Here, λ and α denote 
loss aversion and feedback sensitivity, respectively, which are two of the free parameters in 
the model.
Next, the value representation of the chosen deck was updated based on the reward 
prediction error, which is the discrepancy between the expected outcome, Vchosen,t-1, and the 
actual (subjective) outcome, ut. The reward prediction error δt was thus given by

u V
t t chosen,t-1

δ = −

so that the reward prediction error was positive when the net yield was higher than expected, 
and negative when this was lower than expected. Hence, higher-than-expected outcomes 
would increase the value of the chosen deck, and lower-than-expected outcomes would 
decrease the value of the chosen deck, so that

V V A
tchosen,t chosen,t-1

δ= + ×

In which A represents the learning rate, so that a low value of A indicates low learning (i.e., 
a focus on a longer history of outcomes, because a single outcome does not strongly affect 
Vchosen) and a high value of A indicates high learning (value is to a large extent based on the 
last outcome).
The values of the chosen decks VA, VB, VC and VD, were then converted into action probabilities 
using a Softmax rule, so that the probability of choosing, for example, deck A was given by

p
V

V V V V

exp( )

exp( ) exp( ) exp( ) exp( )A t
A t

A t B t C t D t
,

,

, , , ,

θ

θ θ θ θ
=

⋅

⋅ + ⋅ + ⋅ + ⋅

with the Softmax’ inverse temperature θ being dependent on the trial number, so that

t(
10

)cθ =

To obtain reliable model parameter estimates on a population level, we used maximum a 
posteriori estimation. Priors were set over each of the free parameters: for λ, normpdf(2,1); 
for α and A, betapdf(1.3, 1.3); for c, normpdf(4,2). Subsequently, on each trial, new evidence 
was considered by computing the posterior probability distribution using Bayes’ rule.

Statistics
All outcomes measures were tested for being normally distributed using the D’Agostino 
and Pearson omnibus normally test (threshold set at P < 0.05), after which the appropriate 
statistical test was performed. All computational analyses were performed with Matlab 
2014a and the statistical tests were performed with GraphPad Prism 6.0. Asterisks in the 
figures denote statistical significance, with the following ranges: * P < 0.05, ** P < 0.01, *** P 
< 0.001, **** P < 0.0001.

Results
IGT performance of AN patients is altered
In total, we compared IGT performance of 60 AN patients with 55 healthy controls (Fig. 1e 
and Fig. 2a). In accordance with literature, we observed reduced learning over the different 
trial blocks in AN patients compared to control participants (Fig. 2b, left panel). After 
classifying AN patients into the restrictive and binge-purge subtypes, we observed visually 
comparable differences to the control group, although there was only a significant group × 
block interaction effect in the binge-purge subtype group compared to controls. However, 
a two-way ANOVA performed on the two AN subtypes separately revealed no significant 
differences between the two patient groups (group effect, P = 0.83, group × block interaction 
effect, P = 0.15).

AN patients exhibit decreased loss aversion
After fitting the model to the data and estimating the model parameter values, we observed a 
significant decrease in the estimate of loss aversion parameter λ in AN patients as compared 
to healthy controls (Fig. 2c). Furthermore, we performed individual one-sample statistical 
tests on the two groups to assess whether their λ estimates were significantly higher than 1, 
which would be indicative of a stronger impact of losses than wins on behavior, as would be 
expected based on literature32,33. Indeed, the estimate of λ for the controls was significantly 
different from 1 (Wilcoxon signed rank test, P = 0.0002), but this was not the case for AN 
patients (one-sample t-test, P = 0.8352). This indicates that AN patients were not loss averse, 
in contrast to healthy controls. No significant differences were found between AN patients 
and healthy controls on the estimates of feedback sensitivity parameter α, learning rate A or 
stochasticity parameter c.
 We observed no significant differences between the λ estimates of the two different 
AN subtypes (Fig. 2d). Furthermore, a trend towards a significant correlation (P = 0.05) was 
observed between body mass index and loss aversion parameter λ in the AN group, but not 
in healthy controls, suggesting that the reduction in loss aversion in AN patients (Fig. 2f) 
was strongest for those with the lowest body weight.
 To test whether the differences in model parameter values between AN patients 
and controls were sufficient to describe the observed changes in the classic measure of 
IGT performance (Fig. 2b), we performed a posterior predictive check of the model34. To 
this aim, we simulated data for each participant individually using only the participant’s 
model parameter estimates, and plotted the IGT performance of the simulated data over the 
different trial blocks. This procedure replicated the observed impairment in IGT performance 
(Fig. 3), indicating that the differences in model parameter values were sufficient to explain 
differences in IGT performance in the group.

Replication in second cohort
In order to replicate the observed effects, we tested an additional 216 patients on the IGT; 
142 with the restrictive subtype and 74 patients with the binge-purge subtype. Although 
this experiment lacked a formal healthy control group, assessing the absolute value 
estimate of loss aversion parameter λ may provide insights into the IGT performance of 
this patient group. Again, we observed a λ parameter value estimate that was close to 1 
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Figure 2: AN patients show reduced IGT performance. a. Task design. Losses and gains were accompanied by 
visual (smileys) and auditory (happy vs sad sounds) feedback. A total of 100 trials were performed per participant. 
b. A significant interaction effect was found in the IGT score over the different 20-trial blocks of AN patients 
compared to controls (2-way ANOVA, main effect of group, p = 0.163; group x block interaction effect, P = 0.004). 
Two patients were not subtype-classified. c. Computational model analysis revealed that AN patients had a lower 
value of the loss aversion parameter λ (Mann-Whitney test, P = 0.004), indicating that AN patients are less loss 
averse than controls. No effects were observed on feedback sensitivity parameter α (Mann-Whitney test, P = 
0.2158), learning rate A (Mann-Whitney test, P = 0.0535) and stochasticity factor c (unpaired t-test, P = 0.3515). 
Horizontal lines denote median value. d. No effect between the value of parameter λ between the two subtypes of 
AN (unpaired t-test, P = 0.6200). Horizontal lines denote median value. e. Estimates of loss aversion parameter λ 
showed a trend towards a positive correlation with BMI in AN patients (P = 0.05, R2 = 0.06), but not in controls (P 
= 0.73, R2 < 0.01). No BMI data was available for six participants. f. Visual summary: AN patients are less sensitive 
to monetary losses than controls.

Figure 3: Posterior predictive check of the model. Simulating data with the extracted model parameter 
estimates (average of 5 simulations per subject) replicated the difference in IGT performance between 
AN patients and controls (2-way ANOVA, main effect of group, P = 0.0623, group x block interaction 
effect, P < 0.0001).

(Supplementary Fig. 1a,b); this is considerably lower than what is known in healthy subjects 
from literature25,35,36, and significantly lower than the control group from the first cohort (P 
= 0.003), but statistically indistinguishable from the first cohort of AN patients (P = 0.40). 
Furthermore, we again observed no significant differences in the estimates of λ between 
the different AN subtypes (P = 0.71). No significant correlation was observed between the 
estimate of loss aversion parameter λ and body mass index (Supplementary Fig. 1c).
 
Discussion
In this study, we have assessed behavior in the IGT of AN patients and healthy controls, 
by employing computational trial-by-trial analyses. We replicated data from a vast body of 
literature23 that shows that AN patients are impaired in IGT performance, and subsequently 
demonstrated that this was driven by the absence of loss aversion. Such a decreased 
sensitivity to monetary losses prevented participants to avoid the disadvantageous decks, 
leading to a less steep learning curve in the classic measures of IGT performance (Fig. 
2b). This diminished loss aversion might also be related to the apparent insensitivity of 
AN patients to the negative consequences of the disease itself, including the suppression 
of extreme hunger and social isolation. Interestingly, AN patients self-report increased 
sensitivity to punishment in questionnaires37, suggesting suboptimal reflection of their own 
behavior. This mismatch between self-report measures and empirical measures may be of 
importance, since it sheds light on the ability of AN patients to assess their own actions in 
hindsight and reflect on their own well-being and body weight.
 Several studies have assessed the neural basis of loss aversion in human subjects. 
In accordance with reward prediction error theory38,39, one seminal study demonstrated that 
in healthy subjects that were confronted with different gambling options, fMRI BOLD signal 
was reduced in the ventral striatum and ventromedial prefrontal cortex, the target regions 
of midbrain dopamine, when the potential losses of the gamble increased40. Given the 
existence of alterations in the dopamine system in AN patients17, it is tempting to speculate 
that malfunction in the dopamine system underlies the observed absence of loss aversion 
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in AN patients. Indeed, our lab recently showed that negative feedback learning, closely 
related to adapting to monetary losses, is diminished during an abundance of dopamine in 
the ventral striatum16. 
 Other neuroimaging studies have confirmed alterations in the dopamine system 
of AN patients. For example, dopamine D2/D3 receptor availability has been shown to be 
higher in recovered AN patients18 (but see ref. 41). Furthermore, neural responses to taste 
reward were increased in midbrain dopamine projection areas in AN patients19, indicative of 
alterations in the neural signals associated with value-based learning. However, since the 
authors did not distinguish between positive and negative prediction errors (guiding reward 
and punishment learning, respectively), these signals could also represent the general 
salience of food. Another study compared BOLD responses of recovered AN patients with 
controls during a monetary reward task, and showed that negative feedback signals in 
the ventral striatum were largely diminished in AN patients, as this area exhibited similar 
responses to monetary gains and losses, in contrast to healthy control who showed opposite 
neural responses to these two types of outcome42. Taken together, these studies suggest 
that reward prediction error signals arising from midbrain dopamine circuits are impaired 
in AN, which may give rise to disturbances in adapting behavior to feedback, in particular 
following losses. To date, however, results with psychotropic medication targeting the 
dopamine system in AN patients have been disappointing, although there is some evidence 
that treating patients with a dopamine D2 receptor antagonist may have beneficial effects 
on weight restoration43. Besides a role for dopamine, alterations in other brain structures 
involved in value computations or negative emotion processing could underlie the observed 
changes in loss aversion in AN patients. For example, structural and neurophysiological 
changes in the prefrontal cortex and amygdala have been reported in AN patients44.

Limitations and considerations
One possible concern of this study is the finding that we observed a trend towards a 
significant correlation between body mass index and the estimate of loss aversion parameter 
λ in AN patients of the first cohort. Although this may merely reflect the severity and 
progression of the disease itself, it may also arise from malnutrition in AN patients. Although 
very few studies have investigated the effects of hunger on performance in standardized 
decision making tasks, it is generally assumed that a negative energy balance negatively 
affects cognitive performance45. Studies that compare decision making capacity between 
recovered and symptomatic AN patients demonstrate the persistence of cognitive deficits 
after recovery46-48, although the few studies that made this comparison with regards to IGT 
performance suggest a partial restoration back to normal levels23.
 A limitation of this study is the fact that the patient and control groups of the first 
cohort differed in terms of their level of education (Table 1). Given the negative effect that 
AN can have on school performance, however, this does not necessarily imply differences 
in intelligence. Furthermore,  paradoxically, a higher level of education is usually associated 
with worse IGT performance49. Thus, if any effects were to be expected on the basis of 
education, this effect should be into the opposite direction of what was observed in this 
study. 
 Finally, it is interesting to note that the overall estimates of choice stochasticity 
parameter c were negative for both the control and AN group. This indicates that the 
majority of participants chose more randomly as the session progressed, which may 
seem counterintuitive, given that a more exploitative approach would be beneficial once 
participants have a better understanding of the reward contingencies of the decks later on 
in the task. Such negative values for this parameter have been found before, also in healthy 
individuals, and possibly reflect fatigue or boredom25.

Comparison with other studies
A previous study has also used a computational model based on prospect utility theory to fit 
a pooled set of IGT data of AN patients, gathered in three independent institutes24. Besides 
the model parameters based on prospect utility theory, their model included the decay-
reinforcement learning rule and trial-independent choice rule — a model that we also tested 
but that was not the best descriptor of IGT performance in our analysis (Table 2, model #8). 
Furthermore, data from their AN group was collected across three research institutes, while 
their control group comprised only participants recruited at one institute. Interestingly, they 
also observed a significant decrease in loss aversion when only comparing patients and 
controls from the institute that was used for recruitment of the control group, but this effect 
statistically disappeared after pooling the groups from the different institutes.
 A recent study assessed IGT performance in a large cohort of 611 female 
individuals, approximately half of which were AN patients50. Despite their large sample size, 
they did not observe any significant differences on the model parameters that were fitted to 
the data, although they used a model based on expected utility theory, that we and others 
have shown to be a poor descriptor of behavior in the IGT25. Furthermore, the authors did not 
describe what method they used to estimate the model parameters, nor did they provide a 
quantification of the fit of the model, making a comparison between our studies difficult. 
 Several other studies have demonstrated altered negative feedback learning in AN 
patients, although not all of these studies seem directly in accordance with our findings. For 
example, one study performed a probabilistic reversal learning task in AN patients in an fMRI 
scanner51, and observed an increased learning rate for negative feedback in AN patients 
compared to healthy controls, although this effect was numerically modest. Negative 
feedback co-incided with elevated levels of activity in the posterior medial prefrontal cortex 
in AN patients compared to controls, while no differences were observed in hemodynamic 
responses to reward. Although the dissociable effect on punishment and not on reward is in 
accordance with our study, we would have expected a decrease, rather than an increase, in 
learning rate following punishment.

Concluding remarks
Although the neural underpinnings of AN are largely unknown, it has been proposed that 
the neurocognitive deficits associated with AN are a contributing factor in the progression 
of the disease and the inability of patients to recover. By using computational analysis of 
data of patients performing the IGT, we show that AN patients do not exhibit loss aversive 
behavior, in contrast to what is seen in healthy controls. Our data are in line with previous 
work that shows alterations in negative feedback processing in AN patients, and points 
towards disruptions in the brain circuits involved in value processing. Together, these 
findings provide possible handles for the psychological treatment of AN patients, for the 
development of pharmacological therapies for AN and provide important fundamental 
insights in the etiology of the disease.
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SUPPLEMENTARY FIGURE 1

Data second cohort 
a. IGT performance across trial blocks in the second cohort of AN patients. This learning curve is not 
significantly different from the first cohort of AN patients (two-way ANOVA, main effect of group, P = 
0.0640; group x block interaction effect, P = 0.5773) but it is significantly different from the control group 
of the first cohort (two-way ANOVA, main effect of group, P = 0.0003; group x block interaction effect, P < 
0.0001). 
b. Value estimates of loss aversion parameter λ of the second cohort of AN patients. These values were 
not significantly different from the λ estimates of the first cohort of AN patients (unpaired t-test, all 
patients second cohorts versus all patients first cohort, P = 0.3955), but they were significantly different 
from the control group of the first cohort (Mann-Whitney test, P = 0.0028). No significant differences 
were found between the restrictive and binge-purge subtype of AN (Mann-Whitney test, P = 0.7147). 
Horizontal lines denote median value.  
c. In the second cohort, the estimate of loss aversion parameter λ did not significantly correlate with 
body mass index (R2 < 0.01, p = 0.74). Based on n = 185 participants; body mass index information was 
not available for 31 participants. 
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CHAPTER 10

General discussion
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In this thesis, I sought to gain insights into the neurocomputational basis of decision making 
and motivation, by looking at how reward and aversion shape choice behavior of rats (chapters 
2 through 8) and humans (chapter 9). By combining different behavioral, pharmacological, 
genetic and computational tools, we were able to increase our understanding of the neural 
mechanisms involved in adapting to positive and negative feedback and the process in 
which the costs and benefit of decisions are weighed. These findings provide important 
fundamental insights into the neurobiology of decision making and motivation, which can 
help understand the pathophysiology of mental disorders associated with deficits in these 
processes.

The neuronal basis of value-based learning and decision making
In chapter 2 of this thesis (see also Box 1), we studied the effects of chemogenetic 
stimulation of the two major dopaminergic pathways of the mesocorticolimbic system: the 
ventral tegmental area-to-nucleus accumbens pathway (VTA → NAc) and the VTA-to-medial 
prefrontal cortex pathway (VTA → mPFC). In one of the first behavioral experiments that 
we conducted, we observed that stimulation of Gq-coupled designer receptors on VTA → 
NAc neurons made rats insensitive to punishment, in that once they started lever pressing 
for sucrose, they did not suppress this behavior if these presses were followed by electric 
foot shock punishment. After also observing that stimulation of this pathway impaired 
adaptation to negative feedback (a reward omission or ‘loss’) in a serial reversal learning 
task, we hypothesized that this behavior may be related to impaired processing of negative 
reward prediction error signals in the NAc, as was previously hypothesized to be involved 
in the etiology of dopamine dysregulation syndrome in Parkinson’s disease1-3, a well-known 
condition associated with an abundance of dopamine in the brain4,5. After conducting a large 
array of behavioral experiments which we combined with chemogenetics, pharmacology, 
fiber photometry and microdialysis, we concluded that hyperactivity of the VTA → NAc 
pathway indeed evoked a phenotype of loss and punishment insensitivity, and that this is 
likely related to ‘overdosing’ dopamine receptors in the NAc with dopamine, which makes 
the NAc unable to detect the transients dips in dopamine release that are associated with 
negative feedback. Besides the possible involvement of this mechanism in the etiology of 
dopamine dysregulation syndrome, we speculated that this may also be involved in the 
overoptimistic and reckless behaviors observed during the ‘high’ of drugs and during the 
manic phase of bipolar disorder, two other conditions that are associated with increased 
extracellular concentrations of dopamine6-9.
 For chapters 3 through 5, we modified the serial reversal learning task that we had 
used in chapter 2, to make it more suitable for computational modeling analysis by rendering 
the reward contingencies probabilistic. In this new version of the task, a lever press at the 
‘active’, or high-probability lever (or nosepoke hole) resulted in reinforcement in 80% (rather 
than 100%) of trials, while pressing the low-probability lever was reinforced in 20% (rather 
than 0%) of trials, so that the animals also had to process false information with regards 
to which of the two options is most beneficial. In this way, animals had to track the value 
of the two choice options by integrating a longer history of outcomes and make a choice 
based hereon. We fit different computational reinforcement learning models to datasets 
of rats performing this probabilistic reversal learning task, and found that a model based 
on the classic Rescorla-Wagner learning theory10,11 predicted task behavior best, both in 
male (model comparison performed in chapter 3) and female rats (chapter 5). This model 
assesses trial-by-trial data of the rats and describes behavior of the animals on the basis of 
four parameters (Figure 1): the reward learning rate, describing the extent to which a single 
reinforced trial increases lever value; the punishment learning rate, describing to what extent 
a single non-reinforced trial decreases lever value; a stickiness parameter that describes the 
amount of perseveration of responding on the same lever; and a stochasticity parameter 
that describes the number of explorative choices (i.e., choosing the lowest valued lever) 

compared to the number of exploitative choices (i.e., choosing the highest valued lever).
 In chapter 3, we fit this model to the behavioral data of rats after pharmacological 
inactivation of different regions of the prefrontal cortex by infusion of a cocktail of the 
GABA receptor agonists baclofen and muscimol. We found that after inactivation of any 
of the four studied prefrontal cortex regions (the prelimbic, infralimbic, medial orbitofrontal 
and lateral orbitofrontal cortices), the value estimate of the punishment learning rate was 
decreased, indicating a lower impact of negative feedback on behavior. Although a decreased 
learning rate does not imply an impairment per se (since for probabilistic reversal learning 
a wider range of learning rates can lead to successful task execution), it does suggest an 
involvement of these four brain regions in negative feedback processing. Similarly, we found 
an involvement of the prelimbic and lateral orbitofrontal cortex in positive feedback learning 
and of the infralimbic and medial orbitofrontal cortex in choice perseveration. Besides these 
alterations in the value estimates of the model parameters, we also observed changes in the 
classic measures of task performance; inactivation of the infralimbic and lateral orbitofrontal 
cortex reduced the total number of reversals, and inactivation of the prelimbic and medial 
orbitofrontal cortex reduced the total number of rewards the animals obtained. Together, 
these data shed light on the complexity of value-based learning and decision making, and 
provide evidence that value is processed in multiple brain circuits in parallel, as has been 
suggested by recent theories12-14. It further shows robust, whole-prefrontal cortex coding of 
negative feedback learning, which may be related to the importance of this type of learning 
to survival — after all, after experiencing danger, an organism must learn not to get caught 
up in that same situation in the future.
 In chapter 4, this same computational approach provided insight into a long-
standing question in behavioral pharmacology: how dopamine D1- and D2-receptor 
expressing neurons  in the striatum contribute to value-based learning and decision making. 
Influential theories have suggested that these two types of neurons have an opposing 
function in approach versus avoidance learning, respectively15-17. Our data support this theory 
by showing that local infusion of D1 receptor agonist SKF82958 into the ventral striatum 
affected positive feedback learning while infusion of D2 receptor agonist quinpirole affected 
negative feedback learning. We found an additional function of the dopamine D2 receptor 
in the ventral and dorsolateral, but not dorsomedial, striatum in mediating the exploration/
exploitation balance, a parameter related to the decision-making aspect of motivated 
behavior (Figure 1). The findings from this chapter also shed light on the findings of chapter 
2, in which we found that a hyperdopaminergic state is associated with attenuated negative 
feedback learning, in that these effects are probably mediated through dopamine D2 receptor 
activation in the ventral striatum.

Figure 1: parameters of computational model
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 In chapter 5, we studied whether the four assessed parameters of value-based 
decision making fluctuate across the estrous cycle of female rats. We found that positive 
feedback learning and the exploration/exploitation balance (as well as motivation to obtain 
food reward) fluctuated across the cycle, while negative feedback learning and choice 
perseveration did not. We speculated that these fluctuations promote adaptive survival-
directed behavior during certain stages of the cycle through action of gonadal steroids in 
the mesocorticolimbic system18. Through which neuronal mechanisms these effects are 
mediated and why this is evolutionary beneficial are questions of outstanding interest, 
answering of which requires further study.

Motivational aspects of decision making
Many decisions we make in everyday life are complex by nature, and require a careful 
balancing of the costs and benefits associated with different courses of action. For example, 
during food choices of humans, the taste and content of a certain food are considered in 
combination with its health consequences and costs of purchase. As a result, some individuals 
are better in making healthy food choices than others, probably because they weigh these 
different factors differently in their decision-making process, or because baseline levels of 
health and wealth are different. A special case in which food-related decision making goes 
ostensibly awry is during binge eating, in which (usually unhealthy) foods are consumed in 
amounts higher than initially planned and desired, i.e., people lose control over food intake.
 In an attempt to model this behavior in rats, we set up a novel behavioral task in 
chapter 6 that studies the animals’ ability to inhibit the urge to consume a tasty sucrose 
pellet. In this task, animals received a pellet at the start of every 40-second trial, which they 
could consume freely in half of the trials, but needed to wait with consumption of the pellet 
during the other half of the trials. In these waiting trials, behavioral control was contingent 
on the presence of an audiovisual stimulus that acted as a danger signal for the animals, 
and animals quickly learned to control their behavior during this cue. Benefits of this task, 
in comparison with comparable tasks, are that it requires relatively little training, it is able to 
discern between different behavioral phenotypes (including loss of behavioral control, loss 
of stimulus retrieval and loss of motivation), and it tests control over the intake of a primary 
reinforcer, which may provide a more naturalistic approach to behavioral control than tasks 
that involve responding on arbitrary manipulanda, such as levers or nosepoke holes. As such, 
pharmacological inactivation of any of the regions in the ventromedial prefrontal cortex 
(infralimbic, prelimbic or medial orbitofrontal cortex) evoked loss of control over behavior in 
the animals, so that they repeatedly reached out for the food pellet during the presentation 
of the audiovisual stimulus, despite getting foot shock punishment. Inactivation of the 
basolateral amygdala also evoked a phenotype in which animals continuously reached out 
for the pellet despite the presence of the threat signal, although additional latency analyses 
suggested that this was driven by a role of the basolateral amygdala in retrieving the value 
of the stimulus, rather than by directly mediating behavioral control. By combining this task 
with chemogenetics, fiber photometry and pharmacology in chapter 7, we found surprisingly 
little evidence for a direct involvement of dopaminergic neurotransmission in behavioral 
control.
 In chapter 8, we studied the contribution of the mesocorticolimbic system to sodium 
appetite, which is a special case of a costs/benefit decision. Sodium appetite refers to the 
fact that a sodium deficiency of the body evokes vigorous cravings for salty foods, while salt 
is normally considered aversive by many organisms19-22. Salt can therefore act as a cost (i.e., 
a punisher) or as a benefit (i.e., a reward), depending on the physiological state of the animal. 
The mechanism by which the brain can make this ‘switch’ in salt appreciation from aversive 
to appetitive remains elusive, and studies about a direct involvement of the dopamine 
system in salt appetite have been inconclusive (e.g., see refs. 23-26). Here, we tried to resolve 
these inconsistencies by using fiber photometry, c-Fos immunoreactivity, chemogenetics 

and behavioral pharmacology to study the involvement of the mesocorticolimbic dopamine 
system in sodium appetite. By using a microstructural analysis of licking behavior27-30 
during a home cage free-intake paradigm, we tried to parse the effects of dopaminergic 
manipulations on the motivational versus hedonic component of sodium appetite. We show 
that its motivational, but not hedonic, aspect is likely dependent on functional activity in the 
ventral striatum, but that this effect is not mediated by dopaminergic neurotransmission in 
this area.

Box 1 
The most important conclusions from the chapters in one sentence.

Chapter 2

• An abundance of dopamine in the brain evokes a phenotype of loss and punishment 
insensitivity through overstimulation of dopamine receptors in the nucleus accumbens 
and the subsequent impairment in negative prediction error processing.

Chapter 3

• Punishment learning is dependent on a wide array of prefrontal cortex regions 
(prelimbic, infralimbic and orbitofrontal cortices), while reward learning and choice 
perseveration are anatomically segregated.

Chapter 4

• Stimulation of dopamine D1 and D2 receptors in the ventral striatum guides reward and 
punishment learning, respectively, while exploratory choice behavior is dependent on 
the dopamine D2 receptor in the ventral and dorsolateral striatum.

Chapter 5

• Reward learning, exploration and motivation fluctuate across the estrous cycle of 
female rats.

Chapter 6

• Using a newly developed behavioral task for rats, we show that the medial prefrontal 
cortex is important for inhibitory control over behavior.

Chapter 7

• There is little evidence of a direct involvement of dopaminergic neurotransmission in 
the exertion of behavioral control in rats.

Chapter 8

• The nucleus accumbens may mediate the motivational, but not hedonic, component of 
sodium appetite in rats, but this is not driven by dopamine.

Chapter 9

• Anorexia nervosa patients show insensitivity to monetary losses in the Iowa gambling 
task in comparison to healthy controls. 
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Value-based decision making in neuropsychiatric conditions
As reviewed in the introduction of this thesis, abnormalities in the brain circuits involved 
in value-based decision making and motivation have been implicated in a wide range of 
neuropsychiatric conditions. One of these conditions is the eating disorder anorexia 
nervosa, which has been associated with alterations in dopamine neurotransmission in the 
mesocorticolimbic system31,32. Furthermore, anorexia nervosa patients show impairments in 
laboratory tasks that assess decision making capacity, such as set shifting33,34 and the Iowa 
gambling task35. In an attempt to find the computational basis of these decision making 
deficits, and to bridge the gap between decision making tasks in rodents and men, we used 
computational modeling of data of a group of anorexia nervosa patients and controls that 
performed the Iowa gambling task in chapter 9. We showed that a model based on prospect 
utility theory (which assumes that the subjective pleasure from a monetary win is not 
linearly proportional to its numerical size) is superior in explaining the participants’ choices, 
and subsequently showed that anorexia nervosa patients are less sensitive to monetary 
losses than healthy controls. We speculated that this loss insensitivity is related to the 
disturbances in the dopamine system that have been observed in anorexia nervosa patients, 
and thereby provide a possible framework for the pharmacological treatment of these 
patients. Interestingly, certain studies have suggested an increased dopaminergic tone in 
anorexia nervosa patients, and we showed, in chapter 2, that an abundance of dopamine in 
the brain, at least in rats, leads to insensitivity to negative feedback. Although it is tempting 
to speculate that these changes in value-based decision making are the direct result of 
increased dopaminergic tone in anorexia nervosa patients, further research should decipher 
whether this is indeed the case. 

Methodological considerations
Most experimental work in this thesis has been performed in rats. Although the brains 
of humans and rodents show structural and functional similarities, it remains a question 
whether our findings are directly applicable to humans. In this regard, it is especially 
challenging to create behavioral tasks that are unambiguous in their interpretation, and 
of which the outcome parameters demonstrate face, predictive and construct validity. 
Of course, decision making behavior of humans is a lot more complex by nature than the 
decisions observed in species like mice and rats. For example, the long-term negative health 
consequences of certain actions, like taking unhealthy foods or using drugs, are simply not a 
factor when animals make choices. It is therefore very difficult, if not impossible, to develop 
behavioral tasks that encompass bad eating habits or addiction as a whole. It is, however, 
possible to model certain aspects of these phenomena, like sensitivity to reward or simple 
economic considerations (such as choosing between a small reward now or a large reward 
in a minute from now).
 Computational modeling of behavioral data was one way for us to increase the 
translational value of our animal models, thereby assessing subtle changes in the strategy 
of animals in a reversal learning paradigm. The parameters that can be extracted from such 
a computational model provide knowledge about the processes that comprise the basis 
of complex decision making behavior, such as learning from reward and punishment, and 
perseverative behavior. In fact, these same computational models can be applied to human 
data of tasks like the two-armed bandit task36,37, which is essentially a version of probabilistic 
reversal learning. If this is done thoroughly, data from rodent studies can be used to directly 
test theories from computational psychiatry that have been based on human studies, thereby 
utilizing the extensive toolbox of neural manipulations that is available for rodents.
 The novel task that models control over behavior that we presented in chapters 
6 and 7 is an attempt to provide a more naturalistic approach to behavioral control. Many 
tasks that study similar behaviors, such as the 5-choice serial reaction time task and the 
stop-signal task, study behavioral control based on responses on arbitrary manipulanda, like 

nosepokes or lever presses. The fact that in our task, rats had to control themselves at the 
mere sight of a food reward can therefore be seen as better reflective of the human situation, 
in which food is abundantly available but must be consumed in limited amounts in order 
to stay healthy. That said, the punishment aspect of behavioral tasks, like in this case an 
electric foot shock, have limited translatable value, since the punishment involved in human 
decision-making processes are often more probabilistic and long-term by nature, such as 
the negative health consequences that develop over a longer period of time. 

Future directions
 

“Science is always wrong. It never solves a problem without creating 10 more.”

Stuart Firestein, quoting George Bernard Shaw in his  
book Ignorance: How It Drive Science (2012)

 
In this thesis, I have assessed how the brain of the rat processes reward and aversion and 
how that eventually leads to adaptations in behavior. We have, for example, learned that 
the neural mechanisms of reward and punishment learning are partially segregated in the 
forebrain, that deviations from an optimum in neurotransmitter concentrations can hamper 
the computations associated with decision making, that dopamine is not involved in all 
motivational processes, and that some disease states are associated with changes in value-
based decision making. As such, I have answered some important fundamental questions 
about the basic processes underlying decision-making and motivation. That said, as set 
forth by Stuart Firestein in his book ‘Ignorance: How It Drives Science’, scientific experiments 
should raise more questions than they answer. Therefore, in box 2, I conclude this thesis 
with an overview of the most important and most pressing questions that arise from each of 
the eight experimental chapters.

  

Box 2 
Questions of outstanding interest 
• To what extent is the overoptimistic behavior seen during hyperdopaminergic states the 

result of impaired negative feedback learning, as compared to other cognitive effects of an 
abundance of dopamine in the brain, such as enhanced temporal discounting capacity? 

• Why is punishment learning so abundantly coded in the prefrontal cortex? 
• What is the computational process that underlies explorative versus exploitative choice 

behavior, and why is this only dependent on the dopamine D2 receptor? 
• What is the evolutionary advantage of adaptive changes in reinforcement learning during 

the different stages of the rat estrous cycle? 
• Through which motor pathway does the medial prefrontal cortex exert control over 

behavior? 
• Why are monoamine reuptake inhibitors effective for certain impulse control disorders, if 

the dopamine system does not directly mediate behavioral control? 
• Why are some forms of motivation dependent on dopaminergic neurotransmission in the 

nucleus accumbens, and others not? 
• Are the differences in value processing in anorexia nervosa patients involved in the 

etiology of anorexia nervosa or are they merely an epiphenomenon of the disease?  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CHAPTER 11

Addendum



SAMENVATTING IN HET NEDERLANDS
Neuroeconomische mechanismen van beloning en straf

In dit proefschrift heb ik onderzocht hoe het brein beloning en straf verwerkt 
en hoe dit uiteindelijk leidt tot aanpassingen in gedrag. Door gebruik 
te maken van de rat als model voor beslisgedrag konden we technieken 
gebruiken die niet mogelijk zijn bij mensen. Deze technieken zijn onder 
andere het direct aflezen van activiteit van hersencellen (‘fiber photometry’), 
het tijdelijk stilleggen van bepaalde structuren in het brein om zo te kijken 
hoe beslisgedrag van ratten verandert (‘behavioral pharmacology’) en het 
activeren van bepaalde groepen hersencellen met behulp van door virus 
ingebrachte eiwitten (‘chemogenetics’). Veel van de bevindingen in dit 
proefschrift hebben betrekking op de prefrontale hersenschors, welke in de 
mens gelokaliseerd is net boven de ogen, en op de signaalstof dopamine, 
welke wordt afgegeven door hersencellen in de middenhersenen en die 
betrokken is bij het leren van beloning en straf.

Een aantal van de belangrijkste bevindingen uit dit proefschrift:
•	 In hoofdstuk 2 van dit proefschrift laten we zien dat het overoptimistisch 

en roekeloos gedrag dat we zien als er te veel dopamine in het brein 
vrijkomt (bijvoorbeeld na drugsgebruik of tijdens de manische fase van 
bipolaire stoornis) mogelijk wordt veroorzaakt door het onvermogen 
om te leren van straf. Dit onvermogen wordt veroorzaakt doordat 
een hersengebied voorin het brein, de ‘nucleus accumbens’, wordt 
overspoeld met dopamine en hierdoor negatieve leersignalen niet meer 
kan verwerken.

•	 In hoofdstuk 3 inactiveerden we verschillende gebieden van de 
prefrontale hersenschors in de rat en hebben we onderzocht hoe dit hun 
beslisgedrag beïnvloedde. We laten zien dat het leren van straf afhankelijk 
is van grote delen van de prefrontale hersenschors, maar dat andere 
processen, zoals leren van beloning of repetitief keuzegedrag, door 
meer nauwkeurig omschreven delen van de prefrontale hersenschors 
worden gemedieerd.

•	 In hoofdstuk 6 en 7 hebben we een nieuwe gedragstaak voor ratten 
ontwikkeld, waarmee we kunnen onderzoeken hoe het brein controle over 
gedrag uitoefent. Eerst hebben we ratten geleerd om een voedselbeloning 
die recht voor hen ligt niet te eten wanneer gelijktijdig een gevaarsignaal 
werd gepresenteerd (bestaande uit een toon en lampje), en vervolgens 
hebben we activiteit van hersencellen gemanipuleerd om te kijken 
hoe dit hun vermogen om controle over gedrag uit te oefenen aantast. 
We laten zien dat de signaalstof dopamine een kleinere rol speelt in 
dit proces dan eerder gedacht, maar dat het middelste deel van de 

prefrontale hersenschors belangrijk is voor het onder controle houden 
van de neiging om voedsel meteen op te eten.

•	 Hoofdstuk 9 bevat een onderzoek bij mensen, waarin we laten zien dat 
het verwerken van beloningssignalen verstoord is bij patiënten met 
anorexia nervosa. Specifiek lijken zij niet gevoelig voor het verliezen van 
geld in een goktaak. 

De bevindingen uit dit proefschrift zijn voornamelijk fundamenteel van aard. 
Dat wil zeggen, ze leren ons hele basale principes over de werking van ons 
brein. Mogelijk kunnen sommige van de bevindingen ook bijdragen aan het 
verbeteren van behandelingen voor bepaalde hersenziektes. Denk hierbij 
aan bipolaire stoornis (de kennis uit hoofdstuk 2), verslaving (hoofdstuk 6 
en 7) of anorexia nervosa (hoofdstuk 9).
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NOTE ON STATISTICS

Many of the experimental chapters contain references to a 
‘Supplementary statistics table’. These tables contain detailed test 
statistics (t and F values) as well as P values of all the comparisons that 
have been made in this thesis. In view of space, these supplementary 
statistics tables have been omitted from the printed version of this book, 
but will be made available together with publication of the chapters in a 
scientific journal.
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