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Abstract

Processing rewarding and aversive signals lies at the core of many adaptive behaviors, including value-based decision
making. The brain circuits processing these signals are widespread and include the prefrontal cortex, amygdala and
striatum, and their dopaminergic innervation. In this review, we integrate historic findings on the behavioral and
neural mechanisms of value-based decision making with recent, groundbreaking work in this area. On the basis of
this integrated view, we discuss a neuroeconomic framework of value-based decision making, use this to explain
the motivation to pursue rewards and how motivation relates to the costs and benefits associated with different
courses of action. As such, we consider substance addiction and overeating as states of altered value-based decision
making, in which the expectation of reward chronically outweighs the costs associated with substance use and food
consumption, respectively. Together, this review aims to provide a concise and accessible overview of important
literature on the neural mechanisms of behavioral adaptation to reward and aversion and how these mediate
motivated behaviors.
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Reward and Aversion delivery of something pleasant (positive reinforcement)
or the removal of something aversive (negative rein-
forcement). Conversely, a punisher is the adverse conse-
quence of an action that decreases the probability of that
action being taken again. This punisher can be explicit,
such as pain (positive punishment), or implicit, such as
the omission of an expected reward (negative punish-
ment) (for an overview of the terminology on punish-

ment see Jean-Richard-Dit-Bressel and others 2018).

In order to survive and flourish in a competitive world, an
organism must learn to repeat actions that have proven
profitable and avoid actions that have not. In this way, one
learns to adapt its behavior in a changeable environment,
in order to optimally promote survival. For example, it is
sensible to revisit a place that is rich in foods, but not when
this same place is swarming with predators. By incorporat-
ing these positive (food) and negative (predator) experi-
ences into a value representation of stimuli in the
surrounding world, one can enjoy rewards, such as food
and sex, without experiencing potentially life-threatening
dangers. These value representations, and the repeated
updating of these values based on each action’s outcome,
are important drivers of decision-making processes that
living organisms encounter numerous times each day.
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Adapting behavior in response to positive and nega-
tive experiences is driven by a learning process called
operant conditioning or instrumental learning. First
stated by Thorndike (1898), and later refined by Skinner
(1938) (see also Box 1), is the notion that cats, pigeons,
and rats tend to increase the frequency of a certain
behavior when this behavior is reinforced—either by the
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Box I. A Brief History of Research on Reward, Aversion, Motivation, and Decision Making.

between “wanting” and “liking.”
2007

1848 Harlow publishes the case report on Phineas Gage, providing the first evidence for a role of the prefrontal cortex
in executive behaviors, including decision making.

1898 In his Law of Effect, Thorndike states that animals learn through trial and error, an important step in the postulation
of operant conditioning theory.

1927 Pavlov formulates his associative learning theory on the basis of his legendary dog experiment.

1938 Skinner publishes The Behavior of Organisms, including the influential theory on operant conditioning.

1946 Tolman challenges earlier conditioning theories by stating that learning can also occur in the absence of reward or
punishment (i.e., stimulus-stimulus learning).

1954 Olds and Milner discover that rats will work for electrical stimulation of certain brain areas, a phenomenon now
known as intracranial self-stimulation.

1972 Publication of the influential reinforcement learning theory of Rescorla and Wagner.

1981 Sutton and Barto publish computational models that explain temporal difference learning.

1982 Adams and Dickinson perform a set of experiments in rats that demonstrate a distinction between goal-directed
and habitual behavior.

1997 The first measurement of reward prediction error signals in dopamine neurons of monkeys by Schultz.

1998 Berridge and Robinson propose their incentive salience theory of dopamine function, introducing the dichotomy

Boyden, Deisseroth, Roth and others develop viral tools to record and manipulate brain activity with hitherto
impossible precision: start of the era of neural circuit dissection.

Thorndike described his theory in his Law of Effect
(Thorndike 1898), after observing that a cat that is
restrained in a box gradually learns how to escape by
trial and error. Forty years after Thorndike’s experi-
ments, Skinner set the stage for the next decades of
experimental psychological research by theorizing oper-
ant conditioning in his book The Behavior of Organisms
(Skinner 1938) and the development of the now widely
used operant conditioning chambers (hence often termed
“Skinner boxes”). Although his theory was more for-
mally postulated than Thorndike’s, the idea behind it
remained the same: behavior that is reinforced will be
repeated, and behavior that is punished will cease (for a
historic overview of their definitions of punishment, see
Holth 2005). The operant conditioning chambers that
Skinner created became a standard laboratory tool to
study how reward and aversion shape behavior of ani-
mals, and are still widely used in animal research on
addiction, decision making, and learning and memory.
In more recent decades, interest in operant conditioning
has sparked due to the rise of artificial intelligence and its
subfield of machine learning, which studies the ability of
computers to learn on the basis of data without being
explicitly programmed. One form of machine learning is
called reinforcement learning, which teaches computers
how to ideally respond on the basis of feedback, and is
essentially a quantitative approach to operant conditioning.
As such, the computer uses positive and negative feedback
to improve its own performance. Since its development,
reinforcement learning has been applied to a wide variety
of concepts, including computer-driven stock trading (Jae

Won 2001), teaching a computer how to play video games
(Mnih and others 2015), and teaching robots how to move
around in an environment (Peters and others 2003).

An important paper that is considered the foundation
of reinforcement learning theory is work published by
Rescorla and Wagner in 1972 (Rescorla and Wagner
1972), who built upon a theory that stated that “surprise”,
that is, a difference between expected and actually
received reward, is a driving force behind learning. They
proposed that the amount of expected reward was based
on the pooled evidence that reward will occur from all the
stimuli present in the environment. This theory was later
extended by Sutton and Barto (1981) to learning from
rewards that are temporally separated from its predictive
cue or preceding action. The essence of a behavioral
approach to reinforcement learning is that an organism
makes decisions in order to maximize reward in the long
term. For example, if a hungry rat performs a behavioral
task in an operant cage, it tries to earn as many rewards
(e.g., food pellets) as possible.

In humans, everyday value-based decision making
behavior entails a complex process in which the gains and
costs associated with different courses of action at any
particular moment in time are compared in order to maxi-
mize reward. Such a reward can be anything, from the
consumption of a delicious snack to maximizing profits
during a night in the casino, to going to college in order to
achieve long-term wealth and happiness. As in other
organisms, reinforcement learning plays a mediating role
in these decision-making processes; for each possible
action, one makes a cost-benefit analysis on the basis of
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previous experiences, and these costs and benefits are
adjusted for their probability of occurrence and expected
timing of the outcomes. For example, when you want to
buy a tasty dessert, you will consider the direct reward
associated with the consumption, and penalize this in
some way for the direct financial costs of the purchase, as
well as the long-term health consequences of the dessert.
In this way, for every decision you make, the pros and
cons will be weighed into a net expected value that will
steer the decision of performing a certain action or not.

Neuronal Value Signals

Given the large number of decisions an organism has to
make on a daily basis, it is reasonable to assume that value
coding, feedback integration, and value comparisons are
mediated through widespread neural circuits. In the past
decades, many of such value-related brain signals have
been identified using various neuroimaging and neuronal
recording techniques. A formal distinction can be made
between a reward signal, in which neuronal activity changes
during reward delivery, and a reward prediction error sig-
nal, in which neuronal activity changes in response to the
“surprise” associated with unexpectedly occurring reward
or rewarding stimuli. A value signal is a type of reward sig-
nal that scales with the subjective experience of the reward.
This intensity can reflect both differences in quantity (a big-
ger reward will yield a higher neuronal response) and qual-
ity (a better reward will yield a higher neuronal response).
Moreover, these value signals could, in principle, represent
anet expectation, that is, the expected value associated with
a certain action after subtraction of its costs (e.g., effort and
aversive consequences)—an integrated measure of value
that has shown to be encoded in some parts of the human
and monkey brain (Rangel and Hare 2010).

One can assume that in order to make decisions, there
must be some sort of common currency, that is, a single
“one size fits all” scale of value, that can be used to com-
pare choice options of different modalities (e.g., choosing
between coffee or a banana). Evidence in favor of neuronal
value coding in such a common currency comes from a
landmark study by Padoa-Schioppa and Assad (2006), who
performed single unit recordings in the orbitofrontal cortex
of rhesus monkeys. Animals could choose between two
types of juices that differed in taste and were offered in dif-
ferent quantities on a visual screen, and the monkeys could
make a choice by making eye movements. They found that
during the choice process, many neurons in the orbitofron-
tal cortex encoded some aspect of the choices the monkeys
made (Fig. 1). These neurons either encoded (1) the quan-
tity of one of the offered juices, (2) the value (a combination
of taste and amount) of the chosen juice, or (3) the taste of
the chosen juice (a binary response to one of the two juices
during reward delivery). In a follow-up study, these authors
demonstrated that responses of a single neuron to an offered

or chosen reward did not depend on which other rewards
were offered at the same time (Padoa-Schioppa and Assad
2008), suggesting absolute, rather than relative coding of
value. Collectively, these data point toward orbitofrontal
cortex neurons encoding aspects of choice in a single, com-
mon value measure that can be used to compare qualita-
tively different options. A recent study showed that during
deliberation of a binary choice, orbitofrontal cortex neurons
that encode the two different option values alternate in
activity, providing a mechanism for these neurons to be
directly involved in weighing choice options (Rich and
Wallis 2016). Similar forms of economic value coding have
later been found in the ventromedial region of the prefrontal
cortex of monkeys (Strait and others 2014). However,
despite various efforts, no direct evidence has thus far been
found that individual brain cells of rodents encode value in
a single, common scale.

Whether neuronal value signals are subsequently com-
pared and courses of actions selected by distinct, down-
stream brain regions remains a matter of debate (Fumagalli
2013; Vlaev and others 2011). In contrast to a modular
view on economic choice, in which each brain region con-
trols one part of the chain of a choice process, some
researchers have proposed that during decision making,
multiple brain regions compute value components of
choice independent of each other (Cisek 2012; Hunt and
Hayden 2017; Rushworth and others 2012). In this regard,
a parallel has been drawn with the distributed decision
making of bee swarms: when looking for a potential new
hive site, the bees make a choice for a new site in concert,
through a distributed consensus, emerging from the infor-
mation gathered by individual bees (Seeley and others
2006). Likewise, it is thought that different brain areas
evaluate, compare, and/or select different choice options,
and a choice emerges as a result of the interactions of
these regions on a circuit level (Cisek 2012; Hunt and
Hayden 2017). One paper has suggested that different
brain regions have a role in disentangling the different
aspects of choice from sensory cues related to the value of
choice options, very similar to how the visual system
delineates visual imageries (Yoo and Hayden 2018). As a
result, brain regions involved in value-based decision
making encode abstract decision making variables that
each retain components of the value of the options. This
may explain why reward signals have been observed
throughout the brain (Schultz 2000), and it suggests that
there is no final common pathway for choice selection, but
rather that value signals converge at multiple points to
eventually compete for execution in the motor system.
How these ideas relate to value coding in a “common cur-
rency,” that is, if and how these abstract reward signals
eventually converge into value signals in a single, com-
mon scale, remains a question of outstanding interest.

There is substantial evidence that aversive stimuli are
also explicitly coded in the brain. For example, lateral
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Figure 1. Responses of an example OFC neuron of a monkey, in which the animal had to choose between two different juices
offered in varying quantities. The activity of the neuron dependent on the type of offer (#B : #A), but not on the choice of the
animal (juice A or B), or the position of the offered juice on the screen (left or right; not shown). (a) Activity during individual
trials, (b) choices of the animal, (c) average activity during trials of the same offer type. Numbers on the x-axes represent the
quantity of an arbitrary amount of juice B and juice A offered, respectively. Error bars, SEM. Image adapted, with permission from

Nature Springer, from Padoa-Schioppa and Assad (2006).

habenula neurons have shown to increase activity in
response to unexpected punishment and decrease activity
in response to unexpected reward (Matsumoto and
Hikosaka 2007). Furthermore, a subpopulation of baso-
lateral amygdala neurons projecting to the central amyg-
dala are primarily activated by aversive stimuli, and these
have been shown to be essential for fear conditioning
(Namburi and others 2015). Importantly, the brain regions
involved in punishment (i.e., the negative consequence of
an action that suppresses its future expression) have been
shown to partially overlap with those involved in rein-
forcement and reward, including the nucleus accumbens,
septum, prefrontal cortex, amygdala, and hippocampus
(Jean-Richard-Dit-Bressel and others 2018).

Reward Prediction Error Signals

During value-based learning, expectations of reward (and
aversion) are updated on the basis of experiences, creating
an up-to-date representation of the value of stimuli in the
surrounding world that is necessary for making profitable

decisions. As postulated by reinforcement learning theo-
ries, this updating process may be guided by prediction
errors, or “surprise”, computed by subtracting the received
reward from the cached reward expectation:

Reward prediction error =

Reward received

(1

— Reward expected

As such, when a reward is better than expected (i.e., a
positive reward prediction error), the value of the action
or stimulus that preceded that reward will be increased,
and when a reward is worse than expected or when
explicit punishment has occurred (i.e., a negative reward
prediction error), the value of the preceding action or
stimulus will decrease.

Thus, a reward that is fully predicted by a preceding
sensory stimulus will not evoke a neuronal response dur-
ing the reward itself, as the surprise (i.e., reward predic-
tion error) associated with that reward is zero. Neurons
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Figure 2. Reward and reward prediction error (RPE) signals in the brain. After extensive training, reward prediction errors
signals will only emerge during the conditioned (CS; predictive cue), but not unconditioned (US; reward) stimulus.

that encode reward prediction errors will therefore, after
extensive learning, only show changes in activity during the
conditioned stimulus that precedes the reward or punish-
ment, but not the unconditioned reward itself (Fig. 2).
Conversely, when an expected reward is not delivered, or
when explicit punishment is delivered, a negative reward
prediction error occurs, resulting in a reduction in firing rate.
Such positive and negative reward prediction errors are
thought to be important mediators of the approach and
avoidance processes that underlie instrumental learning (den
Ouden and others 2012; Keiflin and Janak 2015; Schultz
and others 1997). In the literature, this prediction error-based
type of learning is often referred to as “model-free” rein-
forcement learning, as it relies on trial-and-error experience,
rather than a coherent understanding of the environment
(i.e., model-based learning) (Dayan and Niv 2008).

Although theoretically and physiologically distinct, it
can be quite challenging to experimentally discern between
reward signals, reward prediction error signals, and, for
example, general responses to salient stimuli (Fig. 2). To
have a full transfer of the neuronal signal from the uncon-
ditioned (i.e., reward or punishment) to the conditioned
(i.e., cue) stimulus, (1) animals need to have fully learned
the association (which may require a long training period),
(2) the environment should be perfectly predictable, and
(3) the timing of the occurrence of the unconditioned stim-
ulus by the experimental subject should be precise. Many
studies report neuronal activation during both the condi-
tioned and unconditioned stimuli (e.g., Beyeler and others
2016, Matias and others 2017; Wang and others 2017),
suggesting that these requirements have not fully been met
or that mixed neuronal signals have been recorded.

The Role of Dopamine

Although neuronal signals with characteristics of reward
prediction error have been found across a wide range of
brain areas (den Ouden and others 2012; Watabe-Uchida

and others 2017), the neurocomputationally most pure
and perhaps behaviorally most important form of predic-
tion error coding is found in dopamine cells in the mid-
brain (Schultz and others 1997). A large proportion of
these neurons have been shown to increase firing in
response to better-than-expected reward, to decrease fir-
ing in response to worse-than-expected reward or explicit
punishment, and to show no change in firing when reward
is fully predictable—an observation that has been
reported in a wide range of species including humans
(D’Ardenne and others 2008), monkeys (Bayer and
Glimcher 2005; Schultz and others 1997), and rodents
(Day and others 2007; Tian and others 2016). In the last
decades, dopamine neurons have therefore emerged as a
prime candidate for mediating reinforcement learning.

A major line of evidence for an involvement of dopa-
mine in reward processing was based on influential work
in 1954 from Olds and Milner who showed that animals
vigorously lever press in exchange for electrical stimula-
tion of limbic brain structures (Olds and Milner 1954)
(Fig. 3), a phenomenon now known as intracranial self-
stimulation. This first experiment was not performed
directly in the dopamine system, but follow-up studies
have shown that intracranial self-stimulation was stron-
gest for midbrain dopamine nuclei and connected regions,
and that half of all the brain regions for which animals
showed self-stimulation were directly connected to dopa-
mine neurons (Wise 1996). A role for dopamine in medi-
ating reinforcement was further suggested by a series of
studies that showed that operant responding for rewards
was attenuated after pharmacological blockade of dopa-
mine receptors in the brain (Kelley 2004; Salamone and
others 2003; Wise and others 1978).

The interest in dopamine further sparked when Schultz
and others (1997) made an exciting discovery in the
1990s: they found neuronal correlates of reward predic-
tion errors in midbrain dopamine neurons of monkeys, as
described by Rescorla and Wagner (1972) more than two
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Figure 3. Images from the original Olds and Milner paper (1954; image in public domain) who for the first time demonstrated
that animals will lever press for electrical stimulation of limbic brain structures. (a) X-ray image of a rat with an electrode implant.
(b) Learning curve of an animal implanted with an electrode in the septal area making lever presses for electrode stimulation.

decades earlier, and in accordance with Sutton and Barto’s
temporal difference learning model (Sutton and Barto
1981; Sutton and Barto 1998). This discovery was an
important step in the understanding of dopamine function
and it suggested a direct role for dopamine neurons in
reinforcement and punishment learning, thereby mediat-
ing important aspects of value-based decision making
(Keiflin and Janak 2015; Schultz and Dickinson 2000).

Although the importance of dopaminergic prediction
errors to learning was quickly acknowledged, their neces-
sity and sufficiency for learning has been confirmed only
recently, employing optogenetic tools in rodents. In one
study, Steinberg and others (2013) demonstrated that
brief optogenetic activation of VTA dopamine neurons
was able to drive learning of the association between a
conditioned stimulus and reward (Steinberg and others
2013). They further showed that activation of dopamine
neurons during the time of expected reward delivery
slowed extinction learning, together suggesting that an
artificial positive reward prediction error can drive appe-
titive learning. Conversely, Chang and others (2016)
showed that brief optogenetic inhibition of VTA dopa-
mine neurons in mice was sufficient to mimic negative
reward prediction errors and thereby drive avoidance
learning (Chang and others 2016). Finally, Saunders and
others (2018) demonstrated that optogenetic excitation of
VTA dopamine neurons during presentation of a cue was
sufficient to attribute incentive motivational value to that
cue, even in the absence of explicit reward. They further
showed that this was mediated by dopaminergic neuro-
transmission in the core region of the nucleus accumbens
(Saunders and others 2018).

To compute a reward prediction error, a system needs,
by definition, information about the reward it expects.

Takahashi and others (2011) studied whether midbrain
dopamine neurons receive this information from the
orbitofrontal cortex by measuring reward prediction
errors in the ventral tegmental area during a reward-
learning task in rats with and without a neurotoxic lesion
of the lateral orbitofrontal cortex (Takahashi and others
2011). They observed that both positive and negative
reward prediction error coding in the ventral tegmental
area was attenuated by the lesion. However, the pattern
of observed effects did not match the hypothesis that the
lesioned part of orbitofrontal cortex conveyed a pure
value signal to the dopamine neurons, as the authors
demonstrated by simulating electrophysiological data
with reinforcement learning models. Indeed, it has later
been suggested that the orbitofrontal cortex has a role in
model-based, rather than model-free reinforcement
learning (Jones and others 2012; Wilson and others
2014), which may explain the lack of evidence for the
OFC encoding value in a way that supports prediction-
error based learning. More recent work on the computa-
tions underlying dopaminergic reward prediction error
suggests that dopamine neurons use value information
from a wide range of areas to compute prediction errors
(Tian and others 2016). Wherever these value signals
arise from, electrophysiological evidence suggests that
dopamine neurons use subtractions to compute the pre-
diction error from the expected and received reward, and
that inhibition through GABAergic neurotransmission in
the ventral tegmental area facilitates this computation
(Eshel and others 2015).

Despite the apparent homogeneity of prediction error
responses in midbrain dopamine neurons in some studies
(Ungless and others 2004), it must be noted that since the
development of genetic tools for neural circuit dissection,
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an increasing number of studies points toward heteroge-
neity in dopamine cells with regard to connectivity, mor-
phology, gene expression, and function (Lammel and
others 2014; Morales and Margolis 2017; Saunders and
others 2018). For example, recent studies have shown
that dopamine released in the prefrontal cortex biases
responses of rodents to ambiguous stimuli toward avoid-
ance (rather than approach) behavior (Vander Weele and
others 2018), and a subset of mesolimbic dopamine neu-
rons releases dopamine in response to aversive, rather
than rewarding stimuli (de Jong and others 2018).
Furthermore, reward-related responses of individual
dopamine neurons have been shown to encode aspects of
motor behavior (Howe and Dombeck 2016; Jin and Costa
2010), together suggesting that prediction errors are not
encoded as mathematically pure and homogeneous as
was thought before. That said, the importance of dopa-
mine and dopaminergic reward prediction errors to value-
based learning and decision making has been one of the
most well-established principles in recent neuroscientific
history (Hu 2016; Keiflin and Janak 2015; Schultz 2016;
Watabe-Uchida and others 2017).

A Neuroeconomic Approach to
Motivation

One aspect of reward-related behavior for which dopa-
mine is critical is motivation (Cools 2008; Salamone
and Correa 2012). Although different authors use
slightly different definitions of this term (Salamone and
Correa 2012), motivation typically refers to the willing-
ness to invest resources (such as time or effort) in order
to receive a reward or to avoid a punisher. In support of
arole for dopamine in motivation, it has been found that
after forebrain dopamine depletion, animals will cease
to actively search for food (and eventually starve to
death), but they will still consume food when it is placed
in their mouth (Salamone and Correa 2012). In less
extreme experiments, it was found that treatment with
dopamine receptor antagonists reduced responding for
food under behaviorally demanding schedules (i.e.,
when animals have to make a relatively large numbers
of responses for food), but not when little or no effort
was required to obtain it (Kelley 2004; Salamone and
Correa 2012). In this context, Berridge and Robinson
have proposed a useful distinction between the “liking”
(i.e., the experience of pleasure) and “wanting” (i.e., the
motivation to obtain it) of a reward (Berridge and
Robinson 1998; Berridge and others 2009), and it is
generally assumed that dopamine is mainly involved in
the latter (Salamone and Correa 2012).

In neuroeconomic terms, motivation is thought of as
the subjective experience that a certain action is worth
pursuing. The value of such an action can be described by

an economic utility function (Houthakker 1950), so that
every time an organism considers a certain action, a
computation is performed where the subjective experi-
ence of the costs (labor and negative consequences, cor-
rected for the probability of occurrence) is subtracted
from the expected reward that follows that action
(receiving food, sex, drugs, or shelter, or avoiding pun-
ishment, corrected for probability) (Rangel and others
2008), yielding the net expected reward value associ-
ated with that action (sometimes referred to as “action
value”; Rangel and Hare 2010):

Net expected reward =

z reVvardsubj ective

- Z COStssubjective

Only when this calculation has a positive outcome, an
action will be pursued, as the expectation of reward is
higher than its expected cost. Conversely, when the out-
come of this calculation approaches 0 or becomes nega-
tive (i.e., when costs > reward), no action is taken. The
subjective reward term in this equation (Zreward, i)
can be seen as the expectation of pleasure associated with
reward (“liking”), and the outcome of the equation is pro-
portional to motivation (“wanting”), so that

2

Motivation oc Z rewardsubjecﬁve
3)
- Z COStSsubj ective

For example, whether an animal will start foraging for
food depends on several factors. First, it depends on the
amount of food it expects to receive in that environment
(Zreward). Second, it depends on to what extent the food is
appreciated; a satiated animal will appreciate food less than
a hungry animal, and palatable food is appreciated more
than plain food. Hence, the objective reward expectation
Sreward should be multiplied with a subjectivity factor that
reflects the metabolic and hedonic state of the animal,
leading to a subjective reward value Xrewardcqiye-
Conversely, the costs of foraging depend on the effort the
animal has to exert to seek for food and the dangers asso-
ciated with food seeking (i.e., the probability of explicit
negative consequences, like a predator attack). Again,
this factor should be corrected for subjectivity, leading to
a subjective cost factor Zcostsyieqive: When the expected
reward outweighs the costs, the animal will start forag-
ing. Logically, subjective reward value increases with
hunger (a meal tastes much better when you are hungry),
so that even in a dangerous environment, reward will at
some point outweigh costs, and the motivation to start to
seek for food will increase. Furthermore, influential eco-
nomic and psychological theories state that rewards and
costs that are further away in the future or that are less
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which discounts them to sometimes negligible levels, thereby making it ostensibly profitable to pursue reward. Note that for
visualization purposes, both rewards and costs are depicted in the standard exponential discounting curve, but the shape of these
curves may differ between factors; see MacKeigan and others (1993), Mischel and others (1969), and Petry (2003).

likely to be received are discounted, that is, its subjective
value is reduced with time and probability—a process
known as temporal or probability discounting, respec-
tively (Critchfield and Kollins 2001; Green and Myerson
2004). Hence, Equation 3 can be rewritten as

Motivation oc
Zsreward * Y reward * reward

“)
- Zscosts * Yeosts * costs

in which s represents a subjectivity factor that scales the
reward/cost on the basis of the animal’s intrinsic state and
desires, and -y a discounting factor that is low when the
rewards or costs are further away in the future or are less
likely to occur.

This simple framework of motivation may help struc-
turing our understanding of phenomena that are associ-
ated with reward seeking and motivation (Fig. 4). For
example, the vast increase in the prevalence of obesity in
the Western world (World Health Organization 2000) is
thought to arise from the abundance of cheap and palat-
able calorie-rich food, the difficulty to make healthy food
choices, and the fact that it is hard to lose weight (Rangel
and Hare 2010). In our society, the costs associated with
food intake are radically different than they have been for
the past millennia and different than for animals in the
wild. For animals and premodern man, the costs mainly
comprised the physical effort and the dangers that were
associated with hunting and other forms of foraging. For

modern man, given the abundance of food, the costs com-
prise the financial costs of the food and the negative
health consequences that are associated with food intake.
Given that food is usually directly available, Equation (4)
can be given by

Motivation oc s * [food reward]
— s * y * [health consequences]

— sk [ﬁnancial costs]

Despite the potential severity of the health consequences
of palatable foods, they often develop over a longer
period of time and they are thus not immediately noticed.
This may discount the subjective experience of the neg-
ative health consequences to a negligible level, except
perhaps when someone has low temporal discounting
characteristics. Indeed, trait impulse control, of which
temporal discounting capacity is an important compo-
nent, is predictive for the maintenance of overweight in
children (Nederkoorn and others 2006) and adults
(Nederkoorn and others 2010). An additional point is
that unhealthy foods, high in carbohydrates and fat, are
often cheaper than healthy foods, adding an extra costs
factor to the equation, thereby decreasing the motiva-
tion to make healthy food choices—a factor that may
especially play a role in people with a low income
(Steptoe and others 1995). Thus, the direct reward of
palatable food and the absence of any direct costs asso-
ciated with its intake makes it ostensibly unprofitable to



Verharen et al.

95

make healthy food choices. Limiting palatable food
intake is especially hard during dieting, as this in fact
increases sensitivity to food reward (Laeng and others
1993; van der Plasse and others 2015), making the left
side of this equation more dominant.

A second useful application of this framework is to
understand substance addiction and the fact that some
people are more prone to develop this mental disorder
than others. Every time a user gets reminded of the sub-
stance (by, e.g., cravings, cues, or social pressure), this
person will make a decision to use them or not.
Considering the expectation of reward from the “high” of
the substance and the negative consequences of its use
(financial costs, hangovers, long-term health conse-
quences, and consequences for social obligations),
Equation (4) can be written as

Motivation o s * [high]
— 5k [ﬁnancial costs]
—s* y* [hangover| (6)
— s* y* [social consequences]

— sy * [health consequences |

In recreational substance users, the expected reward of
substance intake only occasionally outweighs its cost,
while in addicted individuals, the left side of this equation
is chronically dominant. Given this list of costs associ-
ated with prolonged substance use, it is not surprising that
only a minority of recreational drug users eventually
develops addiction (Warner and others 1995). Based on
this equation, however, several risk factors can be identi-
fied for the development of addiction. First, increased
expectation of substance-induced euphoria (note that this
is different from the actually experienced pleasure) would
strengthen the left side of Equation (6). Second, low base-
line levels of the costs factors—that is, a poor social life,
no job or study, and bad health—make the costs of sub-
stance use relatively low. Third, a low value of temporal
discounting factor vy (i.e., discounting of subjective value
over time is stronger) also reduces the weight of the costs
of substance abuse. Indeed, several studies have demon-
strated that increased expectation of drug effects (Volkow
and others 2010), a low socioeconomic status (Jordan and
Andersen 2017; Nesse and Berridge 1997), and high tem-
poral discounting levels (Fineberg and others 2014)
increase the risk for the development of addiction. In this
context, it is important to realize that the value of the dis-
counting factor vy is likely different for the various cost
factors. For example, it has been shown that money is
discounted at a faster rate than freedom, which is dis-
counted at a faster rate than health, whereby discounting
rates were higher in substance addicts compared to
healthy controls (Petry 2003). The negative consequences

of repeated substance use also decrease the baseline lev-
els of health and social life, essentially decreasing the
cost factors in this equation, thus making future use more
likely. Furthermore, both animal and human studies have
shown that repeated exposure to substances of abuse
increase temporal discounting (Fineberg and others
2014). Importantly, in contrast to the intake of (palatable)
nutrients, substances of abuse directly bind to proteins
(such as receptors and transporters) and result in plastic
changes of neural circuits that mediate value-based deci-
sion making (Liischer and Ungless 2006), thus hitting the
hardware of neural computation in the brain.

Implications for Psychiatry

Within this proposed framework, overeating or substance
addiction can be viewed as a state of altered value-based
decision making. Importantly, however, for an individual
within these states, the decision to take unhealthy foods
or substances can be perfectly rational. The negative con-
sequences of overeating and substance use are diffuse and
delayed in time and thus shift the weight in Equations (5)
and (6) dramatically to the left. This may explain why
these mental conditions are among the most difficult to
treat, as the failure rates of dieting and relapse rates of
substance abuse are notoriously high (Brandon and others
2007; Kérkkdinen and others 2018).

Abnormalities in the brain circuits involved in value
processing, motivation, and decision making have been
implicated in overeating, substance addiction, as well as
a wide variety of other neuropsychiatric behaviors. For
example, dysfunctions in the dopamine system have been
associated with obesity (Wang and others 2001), addic-
tion (Volkow and Morales 2015), depression (Russo and
Nestler 2013), bipolar disorder (Cousins and others
2009), attention-deficit hyperactivity disorder (Volkow
and others 2009), and schizophrenia (Weinstein and oth-
ers 2017)—mnot the least because most of the effective
pharmacotherapies for some of these diseases target the
dopamine system. Moreover, dysfunction of the prefron-
tal cortex, another important region for value-based deci-
sion making, has been implicated in a partially overlapping
set of disorders, including addiction (Volkow and Morales
2015), impulse control disorders (Bechara and Van Der
Linden 2005), depression (Han and Nestler 2017), and
schizophrenia (Barch and others 2001). Besides dysfunc-
tions in these brain circuits, altered value-based decision
making has been observed in all of these patient groups
(Fineberg and others 2014; Garon and others 2006; Grant
and others 2000; Murphy and others 2001; Noel and oth-
ers 2013; Shurman and others 2005), an indication that
changes in value processes might be involved in the etiol-
ogy of neuropsychiatric behaviors. Whether this is indeed
the case, and whether changes in value-based decision
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Figure 5. Increased dopamine release in the nucleus accumbens (NAc) specifically interferes with negative reward prediction
error learning, while leaving positive reward prediction error learning intact. This mechanism may explain the overoptimistic
decision making behavior that is observed in states of increased dopaminergic neurotransmission, such as during substance use,
mania, and dopamine replacement therapy in Parkinson’s disease. Image adapted from Verharen and others (2018); published

under a Creative Commons License.

making directly mediate disease progression, remains a
challenging question, although some important theories
have been postulated in recent years.

For example, it has been suggested that depression
at least partially arises from unrealistically low reward
expectations, mainly due to pessimistically set priors
(i.e., assumptions) in model-based (but not model-
free) reasoning (Huys and others 2015). Furthermore,
neurocomputational models predicted that the reck-
less and overoptimistic decision-making behavior
after levodopa treatment in Parkinson’s disease
patients is induced by impaired prediction error learn-
ing due to overstimulation of striatal dopamine recep-
tors (Frank and others 2004). This hypothesis has been
supported by several clinical studies (Cools 2006) and
by a recent rodent study (Verharen and others 2018),
and this may also be of importance for the understand-
ing of mania, as this mental state is also associated
with elevated dopamine levels (Cousins and others
2009) (Fig. 5). A third example is anxiety disorders,
which have been suggested to result from increased
threat avoidance due to an overestimation of the prob-
ability and magnitude of aversive outcomes (Bishop
and Gagne 2018). This mechanism may arise from
alterations in brain areas involved in learning and
value-based decision making, like the amygdala and
anterior cingulate cortex (Bishop and Gagne 2018).

The recent emergence of several new methods for
computational analyses, large-scale neuronal record-
ings and neuronal manipulations with unprecedented

precision now allow for a detailed investigation of the
neural circuits involved in reward and aversion pro-
cessing that contribute to value-based decision making
and motivation. These developments hold great prom-
ise to increase our understanding of these processes,
and may ultimately contribute to the development of
improved treatment strategies for a wide array of men-
tal disorders.
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