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Review

Reward and Aversion

In order to survive and flourish in a competitive world, an 
organism must learn to repeat actions that have proven 
profitable and avoid actions that have not. In this way, one 
learns to adapt its behavior in a changeable environment, 
in order to optimally promote survival. For example, it is 
sensible to revisit a place that is rich in foods, but not when 
this same place is swarming with predators. By incorporat-
ing these positive (food) and negative (predator) experi-
ences into a value representation of stimuli in the 
surrounding world, one can enjoy rewards, such as food 
and sex, without experiencing potentially life-threatening 
dangers. These value representations, and the repeated 
updating of these values based on each action’s outcome, 
are important drivers of decision-making processes that 
living organisms encounter numerous times each day.

Adapting behavior in response to positive and nega-
tive experiences is driven by a learning process called 
operant conditioning or instrumental learning. First 
stated by Thorndike (1898), and later refined by Skinner 
(1938) (see also Box 1), is the notion that cats, pigeons, 
and rats tend to increase the frequency of a certain 
behavior when this behavior is reinforced—either by the 

delivery of something pleasant (positive reinforcement) 
or the removal of something aversive (negative rein-
forcement). Conversely, a punisher is the adverse conse-
quence of an action that decreases the probability of that 
action being taken again. This punisher can be explicit, 
such as pain (positive punishment), or implicit, such as 
the omission of an expected reward (negative punish-
ment) (for an overview of the terminology on punish-
ment see Jean-Richard-Dit-Bressel and others 2018). 
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Abstract
Processing rewarding and aversive signals lies at the core of many adaptive behaviors, including value-based decision 
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Thorndike described his theory in his Law of Effect 
(Thorndike 1898), after observing that a cat that is 
restrained in a box gradually learns how to escape by 
trial and error. Forty years after Thorndike’s experi-
ments, Skinner set the stage for the next decades of 
experimental psychological research by theorizing oper-
ant conditioning in his book The Behavior of Organisms 
(Skinner 1938) and the development of the now widely 
used operant conditioning chambers (hence often termed 
“Skinner boxes”). Although his theory was more for-
mally postulated than Thorndike’s, the idea behind it 
remained the same: behavior that is reinforced will be 
repeated, and behavior that is punished will cease (for a 
historic overview of their definitions of punishment, see 
Holth 2005). The operant conditioning chambers that 
Skinner created became a standard laboratory tool to 
study how reward and aversion shape behavior of ani-
mals, and are still widely used in animal research on 
addiction, decision making, and learning and memory.

In more recent decades, interest in operant conditioning 
has sparked due to the rise of artificial intelligence and its 
subfield of machine learning, which studies the ability of 
computers to learn on the basis of data without being 
explicitly programmed. One form of machine learning is 
called reinforcement learning, which teaches computers 
how to ideally respond on the basis of feedback, and is 
essentially a quantitative approach to operant conditioning. 
As such, the computer uses positive and negative feedback 
to improve its own performance. Since its development, 
reinforcement learning has been applied to a wide variety 
of concepts, including computer-driven stock trading (Jae 

Won 2001), teaching a computer how to play video games 
(Mnih and others 2015), and teaching robots how to move 
around in an environment (Peters and others 2003).

An important paper that is considered the foundation 
of reinforcement learning theory is work published by 
Rescorla and Wagner in 1972 (Rescorla and Wagner 
1972), who built upon a theory that stated that “surprise”, 
that is, a difference between expected and actually 
received reward, is a driving force behind learning. They 
proposed that the amount of expected reward was based 
on the pooled evidence that reward will occur from all the 
stimuli present in the environment. This theory was later 
extended by Sutton and Barto (1981) to learning from 
rewards that are temporally separated from its predictive 
cue or preceding action. The essence of a behavioral 
approach to reinforcement learning is that an organism 
makes decisions in order to maximize reward in the long 
term. For example, if a hungry rat performs a behavioral 
task in an operant cage, it tries to earn as many rewards 
(e.g., food pellets) as possible.

In humans, everyday value-based decision making 
behavior entails a complex process in which the gains and 
costs associated with different courses of action at any 
particular moment in time are compared in order to maxi-
mize reward. Such a reward can be anything, from the 
consumption of a delicious snack to maximizing profits 
during a night in the casino, to going to college in order to 
achieve long-term wealth and happiness. As in other 
organisms, reinforcement learning plays a mediating role 
in these decision-making processes; for each possible 
action, one makes a cost-benefit analysis on the basis of 

Box 1.  A Brief History of Research on Reward, Aversion, Motivation, and Decision Making.

1848 Harlow publishes the case report on Phineas Gage, providing the first evidence for a role of the prefrontal cortex 
in executive behaviors, including decision making.

1898 In his Law of Effect, Thorndike states that animals learn through trial and error, an important step in the postulation 
of operant conditioning theory.

1927 Pavlov formulates his associative learning theory on the basis of his legendary dog experiment.

1938 Skinner publishes The Behavior of Organisms, including the influential theory on operant conditioning.

1946 Tolman challenges earlier conditioning theories by stating that learning can also occur in the absence of reward or 
punishment (i.e., stimulus-stimulus learning).

1954 Olds and Milner discover that rats will work for electrical stimulation of certain brain areas, a phenomenon now 
known as intracranial self-stimulation.

1972 Publication of the influential reinforcement learning theory of Rescorla and Wagner.

1981 Sutton and Barto publish computational models that explain temporal difference learning.

1982 Adams and Dickinson perform a set of experiments in rats that demonstrate a distinction between goal-directed 
and habitual behavior.

1997 The first measurement of reward prediction error signals in dopamine neurons of monkeys by Schultz.

1998 Berridge and Robinson propose their incentive salience theory of dopamine function, introducing the dichotomy 
between “wanting” and “liking.”

2007 Boyden, Deisseroth, Roth and others develop viral tools to record and manipulate brain activity with hitherto 
impossible precision: start of the era of neural circuit dissection.
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previous experiences, and these costs and benefits are 
adjusted for their probability of occurrence and expected 
timing of the outcomes. For example, when you want to 
buy a tasty dessert, you will consider the direct reward 
associated with the consumption, and penalize this in 
some way for the direct financial costs of the purchase, as 
well as the long-term health consequences of the dessert. 
In this way, for every decision you make, the pros and 
cons will be weighed into a net expected value that will 
steer the decision of performing a certain action or not.

Neuronal Value Signals

Given the large number of decisions an organism has to 
make on a daily basis, it is reasonable to assume that value 
coding, feedback integration, and value comparisons are 
mediated through widespread neural circuits. In the past 
decades, many of such value-related brain signals have 
been identified using various neuroimaging and neuronal 
recording techniques. A formal distinction can be made 
between a reward signal, in which neuronal activity changes 
during reward delivery, and a reward prediction error sig-
nal, in which neuronal activity changes in response to the 
“surprise” associated with unexpectedly occurring reward 
or rewarding stimuli. A value signal is a type of reward sig-
nal that scales with the subjective experience of the reward. 
This intensity can reflect both differences in quantity (a big-
ger reward will yield a higher neuronal response) and qual-
ity (a better reward will yield a higher neuronal response). 
Moreover, these value signals could, in principle, represent 
a net expectation, that is, the expected value associated with 
a certain action after subtraction of its costs (e.g., effort and 
aversive consequences)—an integrated measure of value 
that has shown to be encoded in some parts of the human 
and monkey brain (Rangel and Hare 2010).

One can assume that in order to make decisions, there 
must be some sort of common currency, that is, a single 
“one size fits all” scale of value, that can be used to com-
pare choice options of different modalities (e.g., choosing 
between coffee or a banana). Evidence in favor of neuronal 
value coding in such a common currency comes from a 
landmark study by Padoa-Schioppa and Assad (2006), who 
performed single unit recordings in the orbitofrontal cortex 
of rhesus monkeys. Animals could choose between two 
types of juices that differed in taste and were offered in dif-
ferent quantities on a visual screen, and the monkeys could 
make a choice by making eye movements. They found that 
during the choice process, many neurons in the orbitofron-
tal cortex encoded some aspect of the choices the monkeys 
made (Fig. 1). These neurons either encoded (1) the quan-
tity of one of the offered juices, (2) the value (a combination 
of taste and amount) of the chosen juice, or (3) the taste of 
the chosen juice (a binary response to one of the two juices 
during reward delivery). In a follow-up study, these authors 
demonstrated that responses of a single neuron to an offered 

or chosen reward did not depend on which other rewards 
were offered at the same time (Padoa-Schioppa and Assad 
2008), suggesting absolute, rather than relative coding of 
value. Collectively, these data point toward orbitofrontal 
cortex neurons encoding aspects of choice in a single, com-
mon value measure that can be used to compare qualita-
tively different options. A recent study showed that during 
deliberation of a binary choice, orbitofrontal cortex neurons 
that encode the two different option values alternate in 
activity, providing a mechanism for these neurons to be 
directly involved in weighing choice options (Rich and 
Wallis 2016). Similar forms of economic value coding have 
later been found in the ventromedial region of the prefrontal 
cortex of monkeys (Strait and others 2014). However, 
despite various efforts, no direct evidence has thus far been 
found that individual brain cells of rodents encode value in 
a single, common scale.

Whether neuronal value signals are subsequently com-
pared and courses of actions selected by distinct, down-
stream brain regions remains a matter of debate (Fumagalli 
2013; Vlaev and others 2011). In contrast to a modular 
view on economic choice, in which each brain region con-
trols one part of the chain of a choice process, some 
researchers have proposed that during decision making, 
multiple brain regions compute value components of 
choice independent of each other (Cisek 2012; Hunt and 
Hayden 2017; Rushworth and others 2012). In this regard, 
a parallel has been drawn with the distributed decision 
making of bee swarms: when looking for a potential new 
hive site, the bees make a choice for a new site in concert, 
through a distributed consensus, emerging from the infor-
mation gathered by individual bees (Seeley and others 
2006). Likewise, it is thought that different brain areas 
evaluate, compare, and/or select different choice options, 
and a choice emerges as a result of the interactions of 
these regions on a circuit level (Cisek 2012; Hunt and 
Hayden 2017). One paper has suggested that different 
brain regions have a role in disentangling the different 
aspects of choice from sensory cues related to the value of 
choice options, very similar to how the visual system 
delineates visual imageries (Yoo and Hayden 2018). As a 
result, brain regions involved in value-based decision 
making encode abstract decision making variables that 
each retain components of the value of the options. This 
may explain why reward signals have been observed 
throughout the brain (Schultz 2000), and it suggests that 
there is no final common pathway for choice selection, but 
rather that value signals converge at multiple points to 
eventually compete for execution in the motor system. 
How these ideas relate to value coding in a “common cur-
rency,” that is, if and how these abstract reward signals 
eventually converge into value signals in a single, com-
mon scale, remains a question of outstanding interest.

There is substantial evidence that aversive stimuli are 
also explicitly coded in the brain. For example, lateral 
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habenula neurons have shown to increase activity in 
response to unexpected punishment and decrease activity 
in response to unexpected reward (Matsumoto and 
Hikosaka 2007). Furthermore, a subpopulation of baso-
lateral amygdala neurons projecting to the central amyg-
dala are primarily activated by aversive stimuli, and these 
have been shown to be essential for fear conditioning 
(Namburi and others 2015). Importantly, the brain regions 
involved in punishment (i.e., the negative consequence of 
an action that suppresses its future expression) have been 
shown to partially overlap with those involved in rein-
forcement and reward, including the nucleus accumbens, 
septum, prefrontal cortex, amygdala, and hippocampus 
(Jean-Richard-Dit-Bressel and others 2018).

Reward Prediction Error Signals

During value-based learning, expectations of reward (and 
aversion) are updated on the basis of experiences, creating 
an up-to-date representation of the value of stimuli in the 
surrounding world that is necessary for making profitable 

decisions. As postulated by reinforcement learning theo-
ries, this updating process may be guided by prediction 
errors, or “surprise”, computed by subtracting the received 
reward from the cached reward expectation:

Reward prediction error =

        Reward received

        R− eeward expected
	 (1)

As such, when a reward is better than expected (i.e., a 
positive reward prediction error), the value of the action 
or stimulus that preceded that reward will be increased, 
and when a reward is worse than expected or when 
explicit punishment has occurred (i.e., a negative reward 
prediction error), the value of the preceding action or 
stimulus will decrease.

Thus, a reward that is fully predicted by a preceding 
sensory stimulus will not evoke a neuronal response dur-
ing the reward itself, as the surprise (i.e., reward predic-
tion error) associated with that reward is zero. Neurons 

Figure 1.  Responses of an example OFC neuron of a monkey, in which the animal had to choose between two different juices 
offered in varying quantities. The activity of the neuron dependent on the type of offer (#B : #A), but not on the choice of the 
animal (juice A or B), or the position of the offered juice on the screen (left or right; not shown). (a) Activity during individual 
trials, (b) choices of the animal, (c) average activity during trials of the same offer type. Numbers on the x-axes represent the 
quantity of an arbitrary amount of juice B and juice A offered, respectively. Error bars, SEM. Image adapted, with permission from 
Nature Springer, from Padoa-Schioppa and Assad (2006).
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that encode reward prediction errors will therefore, after 
extensive learning, only show changes in activity during the 
conditioned stimulus that precedes the reward or punish-
ment, but not the unconditioned reward itself (Fig. 2). 
Conversely, when an expected reward is not delivered, or 
when explicit punishment is delivered, a negative reward 
prediction error occurs, resulting in a reduction in firing rate. 
Such positive and negative reward prediction errors are 
thought to be important mediators of the approach and 
avoidance processes that underlie instrumental learning (den 
Ouden and others 2012; Keiflin and Janak 2015; Schultz 
and others 1997). In the literature, this prediction error-based 
type of learning is often referred to as “model-free” rein-
forcement learning, as it relies on trial-and-error experience, 
rather than a coherent understanding of the environment 
(i.e., model-based learning) (Dayan and Niv 2008).

Although theoretically and physiologically distinct, it 
can be quite challenging to experimentally discern between 
reward signals, reward prediction error signals, and, for 
example, general responses to salient stimuli (Fig. 2). To 
have a full transfer of the neuronal signal from the uncon-
ditioned (i.e., reward or punishment) to the conditioned 
(i.e., cue) stimulus, (1) animals need to have fully learned 
the association (which may require a long training period), 
(2) the environment should be perfectly predictable, and 
(3) the timing of the occurrence of the unconditioned stim-
ulus by the experimental subject should be precise. Many 
studies report neuronal activation during both the condi-
tioned and unconditioned stimuli (e.g., Beyeler and others 
2016; Matias and others 2017; Wang and others 2017), 
suggesting that these requirements have not fully been met 
or that mixed neuronal signals have been recorded.

The Role of Dopamine

Although neuronal signals with characteristics of reward 
prediction error have been found across a wide range of 
brain areas (den Ouden and others 2012; Watabe-Uchida 

and others 2017), the neurocomputationally most pure 
and perhaps behaviorally most important form of predic-
tion error coding is found in dopamine cells in the mid-
brain (Schultz and others 1997). A large proportion of 
these neurons have been shown to increase firing in 
response to better-than-expected reward, to decrease fir-
ing in response to worse-than-expected reward or explicit 
punishment, and to show no change in firing when reward 
is fully predictable—an observation that has been 
reported in a wide range of species including humans 
(D’Ardenne and others 2008), monkeys (Bayer and 
Glimcher 2005; Schultz and others 1997), and rodents 
(Day and others 2007; Tian and others 2016). In the last 
decades, dopamine neurons have therefore emerged as a 
prime candidate for mediating reinforcement learning.

A major line of evidence for an involvement of dopa-
mine in reward processing was based on influential work 
in 1954 from Olds and Milner who showed that animals 
vigorously lever press in exchange for electrical stimula-
tion of limbic brain structures (Olds and Milner 1954) 
(Fig. 3), a phenomenon now known as intracranial self-
stimulation. This first experiment was not performed 
directly in the dopamine system, but follow-up studies 
have shown that intracranial self-stimulation was stron-
gest for midbrain dopamine nuclei and connected regions, 
and that half of all the brain regions for which animals 
showed self-stimulation were directly connected to dopa-
mine neurons (Wise 1996). A role for dopamine in medi-
ating reinforcement was further suggested by a series of 
studies that showed that operant responding for rewards 
was attenuated after pharmacological blockade of dopa-
mine receptors in the brain (Kelley 2004; Salamone and 
others 2003; Wise and others 1978).

The interest in dopamine further sparked when Schultz 
and others (1997) made an exciting discovery in the 
1990s: they found neuronal correlates of reward predic-
tion errors in midbrain dopamine neurons of monkeys, as 
described by Rescorla and Wagner (1972) more than two 

Figure 2.  Reward and reward prediction error (RPE) signals in the brain. After extensive training, reward prediction errors 
signals will only emerge during the conditioned (CS; predictive cue), but not unconditioned (US; reward) stimulus.
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decades earlier, and in accordance with Sutton and Barto’s 
temporal difference learning model (Sutton and Barto 
1981; Sutton and Barto 1998). This discovery was an 
important step in the understanding of dopamine function 
and it suggested a direct role for dopamine neurons in 
reinforcement and punishment learning, thereby mediat-
ing important aspects of value-based decision making 
(Keiflin and Janak 2015; Schultz and Dickinson 2000).

Although the importance of dopaminergic prediction 
errors to learning was quickly acknowledged, their neces-
sity and sufficiency for learning has been confirmed only 
recently, employing optogenetic tools in rodents. In one 
study, Steinberg and others (2013) demonstrated that 
brief optogenetic activation of VTA dopamine neurons 
was able to drive learning of the association between a 
conditioned stimulus and reward (Steinberg and others 
2013). They further showed that activation of dopamine 
neurons during the time of expected reward delivery 
slowed extinction learning, together suggesting that an 
artificial positive reward prediction error can drive appe-
titive learning. Conversely, Chang and others (2016) 
showed that brief optogenetic inhibition of VTA dopa-
mine neurons in mice was sufficient to mimic negative 
reward prediction errors and thereby drive avoidance 
learning (Chang and others 2016). Finally, Saunders and 
others (2018) demonstrated that optogenetic excitation of 
VTA dopamine neurons during presentation of a cue was 
sufficient to attribute incentive motivational value to that 
cue, even in the absence of explicit reward. They further 
showed that this was mediated by dopaminergic neuro-
transmission in the core region of the nucleus accumbens 
(Saunders and others 2018).

To compute a reward prediction error, a system needs, 
by definition, information about the reward it expects. 

Takahashi and others (2011) studied whether midbrain 
dopamine neurons receive this information from the 
orbitofrontal cortex by measuring reward prediction 
errors in the ventral tegmental area during a reward-
learning task in rats with and without a neurotoxic lesion 
of the lateral orbitofrontal cortex (Takahashi and others 
2011). They observed that both positive and negative 
reward prediction error coding in the ventral tegmental 
area was attenuated by the lesion. However, the pattern 
of observed effects did not match the hypothesis that the 
lesioned part of orbitofrontal cortex conveyed a pure 
value signal to the dopamine neurons, as the authors 
demonstrated by simulating electrophysiological data 
with reinforcement learning models. Indeed, it has later 
been suggested that the orbitofrontal cortex has a role in 
model-based, rather than model-free reinforcement 
learning (Jones and others 2012; Wilson and others 
2014), which may explain the lack of evidence for the 
OFC encoding value in a way that supports prediction-
error based learning. More recent work on the computa-
tions underlying dopaminergic reward prediction error 
suggests that dopamine neurons use value information 
from a wide range of areas to compute prediction errors 
(Tian and others 2016). Wherever these value signals 
arise from, electrophysiological evidence suggests that 
dopamine neurons use subtractions to compute the pre-
diction error from the expected and received reward, and 
that inhibition through GABAergic neurotransmission in 
the ventral tegmental area facilitates this computation 
(Eshel and others 2015).

Despite the apparent homogeneity of prediction error 
responses in midbrain dopamine neurons in some studies 
(Ungless and others 2004), it must be noted that since the 
development of genetic tools for neural circuit dissection, 

Figure 3.  Images from the original Olds and Milner paper (1954; image in public domain) who for the first time demonstrated 
that animals will lever press for electrical stimulation of limbic brain structures. (a) X-ray image of a rat with an electrode implant. 
(b) Learning curve of an animal implanted with an electrode in the septal area making lever presses for electrode stimulation.
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an increasing number of studies points toward heteroge-
neity in dopamine cells with regard to connectivity, mor-
phology, gene expression, and function (Lammel and 
others 2014; Morales and Margolis 2017; Saunders and 
others 2018). For example, recent studies have shown 
that dopamine released in the prefrontal cortex biases 
responses of rodents to ambiguous stimuli toward avoid-
ance (rather than approach) behavior (Vander Weele and 
others 2018), and a subset of mesolimbic dopamine neu-
rons releases dopamine in response to aversive, rather 
than rewarding stimuli (de Jong and others 2018). 
Furthermore, reward-related responses of individual 
dopamine neurons have been shown to encode aspects of 
motor behavior (Howe and Dombeck 2016; Jin and Costa 
2010), together suggesting that prediction errors are not 
encoded as mathematically pure and homogeneous as 
was thought before. That said, the importance of dopa-
mine and dopaminergic reward prediction errors to value-
based learning and decision making has been one of the 
most well-established principles in recent neuroscientific 
history (Hu 2016; Keiflin and Janak 2015; Schultz 2016; 
Watabe-Uchida and others 2017).

A Neuroeconomic Approach to 
Motivation

One aspect of reward-related behavior for which dopa-
mine is critical is motivation (Cools 2008; Salamone 
and Correa 2012). Although different authors use 
slightly different definitions of this term (Salamone and 
Correa 2012), motivation typically refers to the willing-
ness to invest resources (such as time or effort) in order 
to receive a reward or to avoid a punisher. In support of 
a role for dopamine in motivation, it has been found that 
after forebrain dopamine depletion, animals will cease 
to actively search for food (and eventually starve to 
death), but they will still consume food when it is placed 
in their mouth (Salamone and Correa 2012). In less 
extreme experiments, it was found that treatment with 
dopamine receptor antagonists reduced responding for 
food under behaviorally demanding schedules (i.e., 
when animals have to make a relatively large numbers 
of responses for food), but not when little or no effort 
was required to obtain it (Kelley 2004; Salamone and 
Correa 2012). In this context, Berridge and Robinson 
have proposed a useful distinction between the “liking” 
(i.e., the experience of pleasure) and “wanting” (i.e., the 
motivation to obtain it) of a reward (Berridge and 
Robinson 1998; Berridge and others 2009), and it is 
generally assumed that dopamine is mainly involved in 
the latter (Salamone and Correa 2012).

In neuroeconomic terms, motivation is thought of as 
the subjective experience that a certain action is worth 
pursuing. The value of such an action can be described by 

an economic utility function (Houthakker 1950), so that 
every time an organism considers a certain action, a 
computation is performed where the subjective experi-
ence of the costs (labor and negative consequences, cor-
rected for the probability of occurrence) is subtracted 
from the expected reward that follows that action 
(receiving food, sex, drugs, or shelter, or avoiding pun-
ishment, corrected for probability) (Rangel and others 
2008), yielding the net expected reward value associ-
ated with that action (sometimes referred to as “action 
value”; Rangel and Hare 2010):

Net expected reward =

     reward

 costs

subjective

subjectiv

∑
− ee∑

	 (2)

Only when this calculation has a positive outcome, an 
action will be pursued, as the expectation of reward is 
higher than its expected cost. Conversely, when the out-
come of this calculation approaches 0 or becomes nega-
tive (i.e., when costs > reward), no action is taken. The 
subjective reward term in this equation (∑rewardsubjective) 
can be seen as the expectation of pleasure associated with 
reward (“liking”), and the outcome of the equation is pro-
portional to motivation (“wanting”), so that

Motivation reward  

 costs

subjective

subjective

∝∑
∑−

	 (3)

For example, whether an animal will start foraging for 
food depends on several factors. First, it depends on the 
amount of food it expects to receive in that environment 
(∑reward). Second, it depends on to what extent the food is 
appreciated; a satiated animal will appreciate food less than 
a hungry animal, and palatable food is appreciated more 
than plain food. Hence, the objective reward expectation 
∑reward should be multiplied with a subjectivity factor that 
reflects the metabolic and hedonic state of the animal,  
leading to a subjective reward value ∑rewardsubjective. 
Conversely, the costs of foraging depend on the effort the 
animal has to exert to seek for food and the dangers asso-
ciated with food seeking (i.e., the probability of explicit 
negative consequences, like a predator attack). Again, 
this factor should be corrected for subjectivity, leading to 
a subjective cost factor ∑costssubjective. When the expected 
reward outweighs the costs, the animal will start forag-
ing. Logically, subjective reward value increases with 
hunger (a meal tastes much better when you are hungry), 
so that even in a dangerous environment, reward will at 
some point outweigh costs, and the motivation to start to 
seek for food will increase. Furthermore, influential eco-
nomic and psychological theories state that rewards and 
costs that are further away in the future or that are less 
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likely to be received are discounted, that is, its subjective 
value is reduced with time and probability—a process 
known as temporal or probability discounting, respec-
tively (Critchfield and Kollins 2001; Green and Myerson 
2004). Hence, Equation 3 can be rewritten as

Motivation

   reward

  cost

reward reward

costs costs

∝

γ

γ

s

s

∗ ∗

∗ ∗−

∑
ss ∑

	 (4)

in which s represents a subjectivity factor that scales the 
reward/cost on the basis of the animal’s intrinsic state and 
desires, and γ a discounting factor that is low when the 
rewards or costs are further away in the future or are less 
likely to occur.

This simple framework of motivation may help struc-
turing our understanding of phenomena that are associ-
ated with reward seeking and motivation (Fig. 4). For 
example, the vast increase in the prevalence of obesity in 
the Western world (World Health Organization 2000) is 
thought to arise from the abundance of cheap and palat-
able calorie-rich food, the difficulty to make healthy food 
choices, and the fact that it is hard to lose weight (Rangel 
and Hare 2010). In our society, the costs associated with 
food intake are radically different than they have been for 
the past millennia and different than for animals in the 
wild. For animals and premodern man, the costs mainly 
comprised the physical effort and the dangers that were 
associated with hunting and other forms of foraging. For 

modern man, given the abundance of food, the costs com-
prise the financial costs of the food and the negative 
health consequences that are associated with food intake. 
Given that food is usually directly available, Equation (4) 
can be given by

Motivation   food reward

                         

∝

γ

s

s

∗

− ∗ ∗

[ ]
  health consequences

  financia                      

[ ]
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Despite the potential severity of the health consequences 
of palatable foods, they often develop over a longer 
period of time and they are thus not immediately noticed. 
This may discount the subjective experience of the neg-
ative health consequences to a negligible level, except 
perhaps when someone has low temporal discounting 
characteristics. Indeed, trait impulse control, of which 
temporal discounting capacity is an important compo-
nent, is predictive for the maintenance of overweight in 
children (Nederkoorn and others 2006) and adults 
(Nederkoorn and others 2010). An additional point is 
that unhealthy foods, high in carbohydrates and fat, are 
often cheaper than healthy foods, adding an extra costs 
factor to the equation, thereby decreasing the motiva-
tion to make healthy food choices—a factor that may 
especially play a role in people with a low income 
(Steptoe and others 1995). Thus, the direct reward of 
palatable food and the absence of any direct costs asso-
ciated with its intake makes it ostensibly unprofitable to 

Figure 4.  For every decision a person makes, the pros and cons will be weighed into a net expected value that will steer 
the decision of performing a certain action or not. In this regard, overeating and substance addiction can be viewed as 
motivational states in which the reward associated with the action (green; eating unhealthy foods or taking substances, 
respectively) continuously outweigh the costs (red). Costs are usually further away in the future (and sometimes probabilistic), 
which discounts them to sometimes negligible levels, thereby making it ostensibly profitable to pursue reward. Note that for 
visualization purposes, both rewards and costs are depicted in the standard exponential discounting curve, but the shape of these 
curves may differ between factors; see MacKeigan and others (1993), Mischel and others (1969), and Petry (2003).
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make healthy food choices. Limiting palatable food 
intake is especially hard during dieting, as this in fact 
increases sensitivity to food reward (Laeng and others 
1993; van der Plasse and others 2015), making the left 
side of this equation more dominant.

A second useful application of this framework is to 
understand substance addiction and the fact that some 
people are more prone to develop this mental disorder 
than others. Every time a user gets reminded of the sub-
stance (by, e.g., cravings, cues, or social pressure), this 
person will make a decision to use them or not. 
Considering the expectation of reward from the “high” of 
the substance and the negative consequences of its use 
(financial costs, hangovers, long-term health conse-
quences, and consequences for social obligations), 
Equation (4) can be written as

Motivation   high

  financial costs              

∝

− γ

s

s

∗

∗ ∗

[ ]
[ ]]
[ ]
[ ]

∗ ∗

∗ ∗

∗ ∗

− γ

− γ

− γ

s

s

s

  hangover

  social consequences

   heallth consequences[ ]

	 (6)

In recreational substance users, the expected reward of 
substance intake only occasionally outweighs its cost, 
while in addicted individuals, the left side of this equation 
is chronically dominant. Given this list of costs associ-
ated with prolonged substance use, it is not surprising that 
only a minority of recreational drug users eventually 
develops addiction (Warner and others 1995). Based on 
this equation, however, several risk factors can be identi-
fied for the development of addiction. First, increased 
expectation of substance-induced euphoria (note that this 
is different from the actually experienced pleasure) would 
strengthen the left side of Equation (6). Second, low base-
line levels of the costs factors—that is, a poor social life, 
no job or study, and bad health—make the costs of sub-
stance use relatively low. Third, a low value of temporal 
discounting factor γ (i.e., discounting of subjective value 
over time is stronger) also reduces the weight of the costs 
of substance abuse. Indeed, several studies have demon-
strated that increased expectation of drug effects (Volkow 
and others 2010), a low socioeconomic status (Jordan and 
Andersen 2017; Nesse and Berridge 1997), and high tem-
poral discounting levels (Fineberg and others 2014) 
increase the risk for the development of addiction. In this 
context, it is important to realize that the value of the dis-
counting factor γ is likely different for the various cost 
factors. For example, it has been shown that money is 
discounted at a faster rate than freedom, which is dis-
counted at a faster rate than health, whereby discounting 
rates were higher in substance addicts compared to 
healthy controls (Petry 2003). The negative consequences 

of repeated substance use also decrease the baseline lev-
els of health and social life, essentially decreasing the 
cost factors in this equation, thus making future use more 
likely. Furthermore, both animal and human studies have 
shown that repeated exposure to substances of abuse 
increase temporal discounting (Fineberg and others 
2014). Importantly, in contrast to the intake of (palatable) 
nutrients, substances of abuse directly bind to proteins 
(such as receptors and transporters) and result in plastic 
changes of neural circuits that mediate value-based deci-
sion making (Lüscher and Ungless 2006), thus hitting the 
hardware of neural computation in the brain.

Implications for Psychiatry

Within this proposed framework, overeating or substance 
addiction can be viewed as a state of altered value-based 
decision making. Importantly, however, for an individual 
within these states, the decision to take unhealthy foods 
or substances can be perfectly rational. The negative con-
sequences of overeating and substance use are diffuse and 
delayed in time and thus shift the weight in Equations (5) 
and (6) dramatically to the left. This may explain why 
these mental conditions are among the most difficult to 
treat, as the failure rates of dieting and relapse rates of 
substance abuse are notoriously high (Brandon and others 
2007; Kärkkäinen and others 2018).

Abnormalities in the brain circuits involved in value 
processing, motivation, and decision making have been 
implicated in overeating, substance addiction, as well as 
a wide variety of other neuropsychiatric behaviors. For 
example, dysfunctions in the dopamine system have been 
associated with obesity (Wang and others 2001), addic-
tion (Volkow and Morales 2015), depression (Russo and 
Nestler 2013), bipolar disorder (Cousins and others 
2009), attention-deficit hyperactivity disorder (Volkow 
and others 2009), and schizophrenia (Weinstein and oth-
ers 2017)—not the least because most of the effective 
pharmacotherapies for some of these diseases target the 
dopamine system. Moreover, dysfunction of the prefron-
tal cortex, another important region for value-based deci-
sion making, has been implicated in a partially overlapping 
set of disorders, including addiction (Volkow and Morales 
2015), impulse control disorders (Bechara and Van Der 
Linden 2005), depression (Han and Nestler 2017), and 
schizophrenia (Barch and others 2001). Besides dysfunc-
tions in these brain circuits, altered value-based decision 
making has been observed in all of these patient groups 
(Fineberg and others 2014; Garon and others 2006; Grant 
and others 2000; Murphy and others 2001; Noel and oth-
ers 2013; Shurman and others 2005), an indication that 
changes in value processes might be involved in the etiol-
ogy of neuropsychiatric behaviors. Whether this is indeed 
the case, and whether changes in value-based decision 
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making directly mediate disease progression, remains a 
challenging question, although some important theories 
have been postulated in recent years.

For example, it has been suggested that depression 
at least partially arises from unrealistically low reward 
expectations, mainly due to pessimistically set priors 
(i.e., assumptions) in model-based (but not model-
free) reasoning (Huys and others 2015). Furthermore, 
neurocomputational models predicted that the reck-
less and overoptimistic decision-making behavior 
after levodopa treatment in Parkinson’s disease 
patients is induced by impaired prediction error learn-
ing due to overstimulation of striatal dopamine recep-
tors (Frank and others 2004). This hypothesis has been 
supported by several clinical studies (Cools 2006) and 
by a recent rodent study (Verharen and others 2018), 
and this may also be of importance for the understand-
ing of mania, as this mental state is also associated 
with elevated dopamine levels (Cousins and others 
2009) (Fig. 5). A third example is anxiety disorders, 
which have been suggested to result from increased 
threat avoidance due to an overestimation of the prob-
ability and magnitude of aversive outcomes (Bishop 
and Gagne 2018). This mechanism may arise from 
alterations in brain areas involved in learning and 
value-based decision making, like the amygdala and 
anterior cingulate cortex (Bishop and Gagne 2018).

The recent emergence of several new methods for 
computational analyses, large-scale neuronal record-
ings and neuronal manipulations with unprecedented 

precision now allow for a detailed investigation of the 
neural circuits involved in reward and aversion pro-
cessing that contribute to value-based decision making 
and motivation. These developments hold great prom-
ise to increase our understanding of these processes, 
and may ultimately contribute to the development of 
improved treatment strategies for a wide array of men-
tal disorders.
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